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Abstract

Let G be a graph of order n, and let n =
∑k

i=1 ai be a partition of n with ai ≥ 2.
Let v1, . . . , vk be given distinct vertices of G. Suppose that the minimum degree of G
is at least 3k. In this paper, we prove that there exists a decomposition of the vertex
set V (G) =

∪k
i=1 Ai such that |Ai| = ai, vi ∈ Ai, and the subgraph induced by Ai

contains no isolated vertices for all i, 1 ≤ i ≤ k.

1 Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple
edges. If G is a graph and x ∈ V (G) (where V (G) is the vertex set of G), the neighborhood
N(x) of x is the set of vertices adjacent to x, and the degree d(x) of x is |N(x)|. The
minimum degree of a graph G is

δ(G) := min{d(x) : x ∈ V (G)}.

For a subset S of V (G), N(S) :=
∪

x∈S N(x), <S> denotes the subgraph of G induced by
S, and G− S := <V (G)− S>. The set {1, . . . , n} is denoted by [n].

Let G be a graph of order n, n =
∑k

i=1 ai be a partition of n, and let P be a property
on a graph. We say that G has a decomposition property DP(n, k,

∑
ai,P) if there exists a

decomposition of the vertex set V (G) =
∪k

i=1Ai such that |Ai| = ai and <Ai> satisfies P
for all i, 1 ≤ i ≤ k. We say that G has a strong decomposition property SDP(n, k,

∑
ai,P)

if, for arbitrary k vertices v1, . . . , vk of G, there exists a decomposition V (G) =
∪k

i=1Ai

satisfying DP(n, k,
∑

ai,P) and vi ∈ Ai for all i.
Let us define two properties C and I on graphs. A graph G satisfies C if G is connected.

A graph G satisfies I if G contains no isolated vertices. Let n =
∑k

i=1 ai be a partition
of n = |V (G)|. The connectivity of G is denoted by κ(G). Maurer proposed the following
conjecture.

κ(G) ≥ k =⇒ DP(n, k,
∑

ai, C).
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Frank posed a stronger conjecture.

κ(G) ≥ k ⇐⇒ SDP(n, k,
∑

ai, C).

Györi and Lovász proved the above conjecture independently. Another conjecture of Frank
is the following. Suppose ai ̸= 1 for 1 ≤ i ≤ k. Then,

δ(G) ≥ k =⇒ DP(n, k,
∑

ai, I).

The above conjecture has been proved by Enomoto.

Theorem 1 Let G be a connected graph of order n, and let n =
∑k

i=1 ai be a partition
of n with 1 ̸= ai ≥ 0. Suppose that δ(G) ≥ k. Then G satisfies DP(n, k,

∑
ai, I).

The main purpose of the present paper is to prove the strong decomposition version of the
above result, i.e.,

δ(G) ≥ 3k =⇒ SDP(n, k,
∑

ai, I).

More precisely, we prove the following.

Theorem 2 Let G be a graph of order n, and let n =
∑k

i=1 ai be a partition of n with
ai ≥ 2. Suppose that δ(G) ≥ 3k. Then G satisfies SDP(n, k,

∑
ai, I).

As we will see in the last section, the condition imposed on the minimum degree in The-
orem 2 is almost best possible.

Our proof of the above result is rather complicated because there are many cases. So,
before we give the proof, we consider the following weaker but more easily proved result.

Theorem 3 Theorem 2 is true if δ(G) ≥ 4k − 1.

In section 2, we prove Theorem 3. The proof contains basic strategy for the proof of our
main result. In section 3, we prove Theorem 2. In the proof, we use a lemma which
is purely on integer partitions. To state the lemma, we need one more definition. Let
n =

∑k
i=1 ai =

∑m
j=1 cj be partitions of n. We say that

∑
ai fits

∑
cj if there exist

decompositions [n] =
∪k

i=1Ai =
∪m

j=1Cj such that |Ai| = ai, |Cj | = cj , and |Ai ∩ Cj | ̸= 1
for all 1 ≤ i ≤ k and 1 ≤ j ≤ m.

Lemma 4 Let k,m, n be positive integers, and let n =
∑k

i=1 ai =
∑m

j=1 cj be partitions
of n with ai ≥ 2 for 1 ≤ i ≤ k, and cj ≥ k + 1 for 1 ≤ j ≤ m. Then

∑
ai fits

∑
cj if and

only if the two partitions are different from those in the following table.
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Table of Exceptions

No. m k a = (a1, . . . , ak) c = (c1, . . . , cm)

1 2 k2 ≥ 1 (2k14k2) (odd, odd)
2 2 (23k−1), (3k−15) c1 ≡ c2 ≡ 1 (mod 3)
3 2 (3k) c1 ≡ 1, c2 ≡ 2 (mod 3)

4 3 k2 ≥ k1 + 3 (2k14k2) (odd, odd, even)
5 3 k2 ≥ k1 (2k134k2), (2k1−14k25), (2k14k2−17) (odd, odd, odd)
6 3 k ≡ 0 (mod 3) (3k−17), (3k−255) (k + 1, k + 1, k + 2)
7 3 k ≡ 0 (mod 3) (23k−355), (3k−245), (23k−27), (3k−16) (k + 1, k + 1, k + 1)
8 3 k ≡ 2 (mod 3) (3k−3555), (3k−257), (3k−19) (k + 2, k + 2, k + 2)
9 3 k ≡ 0 (mod 3) (3k−3555), (3k−257), (3k−19) (k + 1, k + 1, k + 4)

10 4 k = even (4k−1, 10), (4k−277) (k + 1, k + 1, k + 1, k + 3)
11 4 k = even (2, 4k−2, 10), (4k−18), (4k−257), (24k−377) (k + 1, k + 1, k + 1, k + 1)
12 4 6 (odd, odd, odd, odd, odd, odd) (7777)

13 5 4 (4, 4, 7, 10), (4, 4, 4, 13), (4777) (55555)

14 m 2 a1 ≡ a2 ≡ 1 (mod 3) (3m−15)
15 m 2 a1 ≡ 1, a2 ≡ 2 (mod 3) (3m)
16 m 2 (odd, odd) (4m)

17 m 3 (odd, odd, even) (4m)
18 m 3 (odd, odd, odd) (4m−15), (4m−17)

(In the table, a = (2k14k2) means a1 = · · · = ak1 = 2, ak1+1 = · · · = ak = 4, k1 + k2 = k;
and a = (2k−277) means a1 = · · · = ak−2 = 2, ak−1 = ak = 7, etc.)
To exclude overlaps in the table, we may add the following assumptions:

k ≥ 3 in No.1, 4, 5, 10, 11. k ≥ 4 in No.2, 3, 6, 7, 8, 9.

Using the above lemma, we obtain a disconnected version of Theorem 1.

Theorem 5 Let G be a graph of order n, and let n =
∑k

i=1 ai =
∑m

j=1 cj be partitions of
n with ai ≥ 2. Suppose that δ(G) ≥ k and the orders of connected components of G are
c1, . . . , cm. Then G satisfies DP(n, k,

∑
ai, I) if and only if the two partitions are different

from those in the table of exceptions (see Lemma 4).

By checking the table of exceptions, Theorem 5 implies the following.

Corollary 6 Let G be a graph of order n, and let n =
∑k

i=1 ai be a partition of n with
ai ≥ 2. Suppose that δ(G) ≥ k. Further, suppose that n ≥ 26 and k = 4, or n ≥ 4k + 7
and k ≥ 5. Then G satisfies DP(n, k,

∑
ai, I).

2 The case of large minimum degree

In this section, we prove Theorem 3. First we prove a key technical lemma.

Lemma 7 Let k,m, n be positive integers, and let n =
∑k

i=1 ai =
∑m

j=1 cj be partitions
of n with ai ≥ 2 for all 1 ≤ i ≤ k, and cj ≥ 2k for all 1 ≤ j ≤ m. Then

∑
ai fits

∑
cj

unless “k = 2, c1 = · · · = cm = 4, and a1 odd.”
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Proof The lemma is true for k = 1, and also true for “k = 2, c1 = · · · = cm = 4 and a1
even.” Let [n] =

∪m
j=1Cj be a decomposition with |Cj | = cj for 1 ≤ j ≤ m. Applying

induction on k, we shall find a decomposition [n] =
∪k

i=1Ai with |Ai| = ai such that
|Ai ∩ Cj | ̸= 1 for all i and j. Note that the exception occurs only if n = 2mk.

Now we may assume that k ≥ 3 or (k = 2 and) c1 > 4. Suppose a1 ≤ · · · ≤ ak and set
ϵj := cj − 2(k − 1) for 1 ≤ j ≤ m. Note that ϵj ≥ 2. Also it follows that

m∑
j=1

ϵj = n− 2m(k − 1) = (1− 1

k
)(n− 2km) +

n

k
≥ n

k
≥ a1.

For 1 ≤ j ≤ m, we choose Dj ⊂ Cj such that |Dj | = ϵj .

Case 1 There exists j0 such that ϵj0 ≥ 3.
In

∪m
j=1Dj , we will choose A1 with |A1| = a1 such that |A1 ∩ Cj | ̸= 1 for all 1 ≤ j ≤ m.

We may assume that ϵ1 ≥ 3 and D1 ⊃ {x, y, z}. Let a1 =
∑s

j=1 ϵj + δ where 1 ≤ δ ≤ ϵs+1,
0 ≤ s < m. Choose D′ ⊂ Ds+1 with |D′| = δ and define A := (

∪s
j=1Dj) ∪ D′. If δ ≥ 2

then set A1 := A. If δ = 1 then choose w ∈ Ds+1 − D′ and set A1 := (A − {x}) ∪ {w}.
Now we can apply induction to partitions n − a1 =

∑k
i=2 ai =

∑m
j=1 |Cj − A1|. (Since

n =
∑

ϵj + 2m(k − 1) > 2mk, and a1 ≤ . . . ≤ ak, one has n− a1 > 2m(k − 1). Thus, the
exception does not occur in the induction step.)

Case 2 For all 1 ≤ j ≤ m, ϵj = 2. I.e., c1 = · · · = cm = 2k.
By our assumption, k ≥ 3. If a1 = 2m then a1 = · · · = ak = 2m holds. So the
desired decomposition is trivial in this case. Now we may assume a1 < 2m. We choose
xj1, x

j
2, y

j
1, y

j
2 ∈ Cj for 1 ≤ j ≤ m. If a1 = 2s (s < m) then we set A1 :=

∪s
j=1{x

j
1, x

j
2} and

apply induction. (Since n−a1 > 2m(k−1), the exception does not occur in the induction
step.) So we may assume a1 = 2s + 1, s < m. Define A1 := (

∪s
j=1{x

j
1, x

j
2}) ∪ {y11}. Note

that a2 ≤ |(
∪s

j=2{y
j
1, y

j
2})∪ (

∪m
j=s+1{x

j
1, x

j
2, y

j
1, y

j
2})|. Thus, using the same argument as in

the previous case, we can choose an appropriate A2. Note that n− a1 − a2 > 2m(k − 2).
Thus we can apply induction to partitions n− a1 − a2 =

∑k
i=3 ai =

∑m
j=1 |Cj −A1 −A2|.

Example 8 Let m = 2, a1 = 2, a2 = · · · = ak = 4, and c1 = c2 = 2k− 1. Then
∑

ai does
not fit

∑
cj .

Using the lemma we prove a disconnected version of Theorem 1.

Theorem 9 Let G be a graph of order n, and n =
∑k

i=1 ai be a partition of n with
ai ≥ 2. Suppose that δ(G) ≥ k, and every connected component of G has at least 2k
vertices. Then G satisfies DP(n, k,

∑
ai, I) unless “k = 2, a1 is odd, and every connected

component of G is order 4.”

Proof Let C1, . . . , Cm be connected components of G with cj := |Cj | ≥ 2k for 1 ≤ j ≤ m.
Using the lemma, we can find a decomposition V (G) =

∪k
i=1Bi such that |Bi| = ai and

aij := |Bi∩Cj | ̸= 1. Let us consider Cj . Applying Theorem 1 to Cj and cj =
∑k

i=1 aij , we
see that <Cj> satisfies DP(cj , k,

∑
aij , I), and hence there is a partition Cj =

∪k
i=1Aij

such that |Aij | = aij and δ(<Aij>) ≥ 1 for all i. Now define Ai :=
∪m

j=1Aij . Then we get

a desired decomposition V (G) =
∪k

i=1Ai.

The same argument is valid for the proof of “Lemma 4 implies Theorem 5.”
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Proof of Theorem 3 Let v1, . . . , vk be given distinct vertices. We may assume a1 ≤
· · · ≤ ak. Suppose that a1 ≤ 3. In this case we choose a path P inG−{v2, . . . , vk} satisfying
that |V (P )| = a1 and v1 is an endpoint of P . Since δ(G−V (P )) ≥ (4k−1)−3 > 4(k−1)−1,
we can apply induction.

Next suppose that a1 ≥ 4. Choose k independent edges v1w1, . . . , vkwk in G. Delete
these 2k vertices. The remaining graph G′ satisfies δ(G′) ≥ 2k− 1. Thus every connected
component of G′ has at least 2k vertices. First we consider the exceptional case. Let
W := {v1, w1, v2, w2}. Note that every connected component of G − W is order 4, and
δ(G) ≥ 4k − 1 = 7 in this case. Thus, every x ∈ W and y ∈ V (G) − W are adjacent.
Therefore, we can easily get a desired decomposition.

Now we may assume that G′ is not the exceptional case. Applying Theorem 9 to G′ and
the partition n−2k =

∑k
i=1(ai−2), we get an appropriate decomposition V (G′) =

∪k
i=1A

′
i.

Define Ai := A′
i ∪ {vi, wi}. Then we obtain a desired decomposition V (G) =

∪k
i=1Ai.

3 Proof of the main result

In this section, we prove Theorem 2.
A partition n =

∑k
i=1 ai is called {2, 3}-partition if ai ∈ {2, 3} for all 1 ≤ i ≤ k.

There is a unique {2, 3}-partition for n = 2, 3, 4, 5, 7, and there are two {2, 3}-partitions for
n = 6. For a given partition n =

∑k
i=1 bi, a refinement of this partition n =

∑k
i=1

∑ki
j=1 ai,j

(bi =
∑ki

j=1 ai,j) is called a {2, 3}-refinement if ai,j ∈ {2, 3} for all i and j. The next lemma
immediately follows from definitions.

Lemma 10 Let n =
∑k

i=1 ai =
∑m

j=1 cj be partitions of n. Then
∑

ai fits
∑

cj if and
only if there exists a common {2, 3}-refinement of these partitions.

The following lemma gives a necessary and sufficient conditions for fitness.

Lemma 11 Let n =
∑k

i=1 ai =
∑m

j=1 cj be partitions of n. Suppose that a1, . . . , as are
odd and as+1, . . . , ak are even, and suppose that c1, . . . , cp are odd and cp+1, . . . , cm are
even. Further suppose that ai, cj ≥ 2 for all i, j. Set

bi :=

{
ai − 3 1 ≤ i ≤ s
ai s < i ≤ k,

dj :=

{
cj − 3 1 ≤ j ≤ p
cj p < j ≤ m.

Then the following hold.

(i) If s = p then
∑

ai fits
∑

cj .

(ii) If s < p then
∑

ai fits
∑

cj iff
∑k

i=1⌊bi/6⌋ ≥ (p− s)/2.

(iii) If s > p then
∑

ai fits
∑

cj iff
∑m

j=1⌊dj/6⌋ ≥ (s− p)/2.

Proof Note that both bi and dj are even. Since

n = 3s+
k∑

i=1

bi = 3p+
m∑
j=1

dj ,
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we have s ≡ p (mod. 2).
(i) In this case, n = 2× n−3s

2 + 3× s is a common {2, 3}-refinement.

(ii) Suppose that
∑k

i=1⌊bi/6⌋ ≥ (p−s)/2. Then n−3s =
∑k

i=1 bi = 2× n−3p
2 +3×(p−s)

is a {2, 3}-refinement of
∑k

i=1 bi. Thus, n = 2× n−3p
2 +3×p is a common {2, 3}-refinement

of n =
∑k

i=1 ai =
∑m

j=1 cj .
Now suppose that there exists a common {2, 3}-refinement for

∑
ai =

∑
cj . Let mi

be the number of 3s used in the refinement of ai, i.e., ai = 2× n−3mi
2 + 3×mi. Then mi

is odd for 1 ≤ i ≤ s, and mi is even for s < i ≤ k. Thus, we have (mi − 1)/2 ≤ bi/6 for
i ≤ s, and mi/2 ≤ bi/6 for i > s. On the other hand,

∑k
i=1mi ≥ p holds. Therefore,

k∑
i=1

⌊bi/6⌋ ≥
s∑

i=1

(mi − 1)/2 +
k∑

i=s+1

mi/2 ≥ (p− s)/2.

(iii) Same as the previous case.

Now we prove Lemma 4.

Proof Suppose that a1, . . . , as are odd and as+1, . . . , ak are even, where 0 ≤ s ≤ k, and
suppose that c1, . . . , cp are odd and cp+1, . . . , cm are even, where 0 ≤ p ≤ m. Define bi and
dj as in Lemma 11. Note that both bi and dj are even, and s ≡ p (mod 2). By Lemma 11,
we can find an appropriate decomposition iff

s = p or

s < p and
k∑

i=1

⌊bi/6⌋ ≥ (p− s)/2 or (1)

s > p and
m∑
j=1

⌊dj/6⌋ ≥ (s− p)/2. (2)

From now on, we classify all exceptional parameters. Let bi = 2αi for 1 ≤ i ≤ k, and
dj = 2γj for 1 ≤ j ≤ m. If cj ≥ k + 1 is odd then γj = dj/2 = (cj − 3)/2 ≥ (k − 2)/2,
otherwise γj ≥ (k + 1)/2. Since

n = 3s+ 2
k∑

i=1

αi = 3p+ 2
m∑
j=1

γj , (3)

we have

p− s =
2

3
(

k∑
i=1

αi −
m∑
j=1

γj). (4)

Case 1 s < p.
By (1) and (4), exceptions occur if and only if

k∑
i=1

⌊αi/3⌋ ≤ (
k∑

i=1

αi −
m∑
j=1

γj)/3− 1,

or equivalently,

3 +
∑

γj ≤
∑

(αi − 3⌊αi

3
⌋).

Let kl := #{i : αi ≡ l (mod 3)}. Note that k0 + k1 + k2 = k. Consequently, exceptions
occur if and only if

3 +
∑

γj ≤ k1 + 2k2. (5)

6



If s = 0, then

2k1 + 4k2 + 6k0 ≤ 2
∑

αi = n = 3p+ 2
∑

γj ≤ 3(p− 2) + 2k1 + 4k2,

which implies 2k0 ≤ p− 2. Further, if p = 2 then

n = 2k1 + 4k2. (if s = 0, p = 2) (6)

Case 1.1 k = 2.
By (5) and k1 + k2 = 2, we have (k1, k2) = (0, 2) or (1, 1).

Case 1.1.1 k2 = 2.
Since α1 ≡ α2 ≡ 2 (mod 3), we have b1 ≡ b2 ≡ 4 (mod 6) and a1 ≡ a2 ≡ 1 (mod 3). Thus,

n ≡ a1 + a2 ≡ 2 (mod 3).

This together with (5), i.e.,
∑

γj ≤ 1 implies c = (3m−15).

No.14: k = 2, a1 ≡ a2 ≡ 1 (mod 3), c = (3m−15).

Case 1.1.2 k1 = k2 = 1.
By (5), we have

∑
γj = 0, and c = (3m).

No.15: k = 2, {a1, a2} ≡ {1, 2} (mod 3), c = (3m).

From now on, we may assume k ≥ 3.

Case 1.2 m = 2.
Since 2 ≤ 2 + s ≤ p ≤ m = 2, we have s = 0, p = 2. By (6), n = 2k1 + 4k2. (Since
2k1 + 4k2 = n ≥ 2(k + 1) = 2(k1 + k2 + 1), we have k2 ≥ 1.)

No.1: m = 2, a = (2k14k2), c = (odd, odd).

Case 1.3 m = 3.
Since 2 ≤ 2 + s ≤ p ≤ m = 3, we have “s = 0, p = 2” or “s = 1, p = 3.”

Case 1.3.1 s = 0, p = 2.
By (6), we have n = 2k1 + 4k2. (Since 2k1 + 4k2 ≥ 3(k1 + k2 + 1), we have k2 ≥ k1 + 3.)

No.4: m = 3, a = (2k14k2), c = (odd, odd, even).

Case 1.3.2 s = 1, p = 3.
By (5), we have ∑

γj ≤ k1 + 2k2 − 3. (7)

Case 1.3.2.1 k0 = 0.
Using (3) and (7), we have

3 + 2k1 + 4k2 ≤ 3 + 2
∑

αi = n = 9 + 2
∑

γj ≤ 3 + 2k1 + 4k2.

This implies n = 3 + 2k1 + 4k2. (Since 3 + 2k1 + 4k2 ≥ 3(k1 + k2 + 1), we have k2 ≥ k1.)

No.5: m = 3, a = (52k1−14k2) or (72k14k2−1), c = (odd, odd, odd).
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Case 1.3.2.2 k0 ≥ 1.
Using (3) and (7), we have

3 + 2k1 + 4k2 + 6(k0 − 1) ≤ 3 + 2
∑

αi = n = 9 + 2
∑

γj ≤ 3 + 2k1 + 4k2.

This implies k0 = 1 and n = 3 + 2k1 + 4k2. (k2 ≥ k1.)

No.5: m = 3, a = (32k14k2), c = (odd, odd, odd).

Case 1.4 m = 4.
First suppose p ≤ 3. Then,

LHS of (5) ≥ 3 + 3× k − 2

2
+

k + 1

2
= 2k +

1

2
,

RHS of (5) ≤ 2k,

a contradiction. So, we may assume that p = 4, which implies s = 0 or 2. Now we have

LHS of (5) ≥ 3 + 4× k − 2

2
= 2k − 1, (8)

RHS of (5) ≤ (k − k2) + 2k2 = k + k2. (9)

Thus, we have k2 = k or “k2 = k − 1, k1 = 1.”

Case 1.4.1 k2 = k.
By (8) and (9), we have 2k − 1 ≤ 3 +

∑
γj ≤ 2k. Thus, k is even and “γ1 = γ2 = γ3 =

γ4 = (k − 2)/2” or “γ1 = γ2 = γ3 = (k − 2)/2, γ4 = k/2.”

Case 1.4.1.1 γ1 = γ2 = γ3 = γ4 = (k − 2)/2.
Since c1 = c2 = c3 = c4 = k + 1, we have n = 4(k + 1) ≡ k + 1 (mod 3). On the other
hand, using αi ≡ 2 (mod 3), we have

n = 3s+
∑

ai ≡
∑

ai ≡ 2
∑

αi ≡ 4k ≡ k (mod 3).

This is a contradiction.

Case 1.4.1.2 γ1 = γ2 = γ3 = (k − 2)/2, γ4 = k/2.
In this case, we have c1 = c2 = c3 = k + 1, c4 = k + 3, and n = 4k + 6. If s = 0 then
a = (4k−1, 10), if s = 2 then a = (774k−2).

No.10: m = 4, k = even, a = (4k−1, 10) or (774k−2), c = (k + 1, k + 1, k + 1, k + 3).

Case 1.4.2 k1 = 1, k2 = k − 1.
By (8) and (9), we have 2k − 1 ≤ 3 +

∑
γj ≤ 2k − 1. This implies that k is even and

γ1 = γ2 = γ3 = γ4 = (k − 2)/2. Thus, c1 = c2 = c3 = c4 = k + 1 and n = 4(k + 1). If
s = 0 then a = (24k−2, 10) or (4k−18), if s = 2 then a = (574k−2) or (7724k−3).

No.11: m = 4, k = even, a = (24k−2, 10) or a = (4k−18) or (574k−2) or (7724k−3),

c = (k + 1, k + 1, k + 1, k + 1).

Case 1.5 m = 5.
By (5), we have 3 + 5 × k−2

2 ≤ 3 +
∑

γj ≤ k1 + 2k2 ≤ 2k, and so k ≤ 4. If k = 3, then
using γj ≥ 1, we get 8 ≤ 3 +

∑
γj ≤ 2k = 6, a contradiction. Thus we may assume that
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k = 4. Then we have γ1 = · · · = γ5 = 1, k2 = 4, p = 5. Since s ≤ p− 2 = 3, we have s = 1
or 3. If s = 1 then a = (744, 10) or (13, 4, 4, 4), if s = 3 then a = (7774).

No.13: m = 5, k = 4, a = (447, 10), (13, 4, 4, 4) or (7774),

c = (55555).

Case 1.6 m ≥ 6.
By (5), we have 3 + 6× k−2

2 ≤ 3 +
∑

γj ≤ k1 + 2k2 ≤ 2k, and so k = 3. Using γj ≥ 1, we
get 9 ≤ 3 +

∑
γj ≤ 2k = 6, a contradiction.

Case 2 s > p.
By (2) and (4), exceptions occur if and only if

m∑
j=1

⌊γj/3⌋ ≤ (
m∑
j=1

γj −
k∑

i=1

αi)/3− 1,

or equivalently,
3 +

∑
αi ≤

∑
(γj − 3⌊γj/3⌋).

Let ml := #{j : γj ≡ l (mod 3)}. Note that m0+m1+m2 = m. Consequently, exceptions
occur if and only if

3 +
∑

αi ≤ m1 + 2m2. (10)

This implies that

3 +
∑

αi ≤ m1 + 2m2 ≤ 2m ≤ 2n

k + 1
. (11)

By (3) and s ≤ k, we have

(k + 1)m ≤
∑

cj = n ≤ 3k + 2
∑

αi ≤ 3k + 2(2m− 3) (12)

By (11) and (12), one has

n− 3k

2
≤

∑
αi ≤

2n

k + 1
− 3. (13)

Case 2.1 k = 2.
Since s ≥ p + 2 ≥ 2, we have a1 ≡ a2 ≡ 1 (mod 2) and a1 = 2α1 + 3, a2 = 2α2 + 3. By
(10), we have

3 + α1 + α2 =
n

2
≤ m1 + 2m2,

which implies c = (4m).

No.16: k = 2, a = (odd, odd), c = (4m).

Case 2.2 k = 3.
By (12), we have

4m ≤ n ≤ 4m+ 3. (14)

Since p + 2 ≤ s ≤ k = 3, we have (p, s) = (0, 2) or (1, 3). If p = 0 then 4m ≤ n =
3s+ 2

∑
αi ≤ 4m, and so c = (4m). Now we may assume p = 1. In general,

4m ≤ n ≤ 3k + 2
∑

αi ≤ 9 + 2(m1 + 2m2 − 3) ≤ 3 + 2m+ 2m2,
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which implies m2 ≥ m− 1. This together with (14) implies c = (54m−1) or (74m−1).

No.17: k = 3, a = (odd, odd, even), c = (4m).

No.18: k = 3, a = (odd, odd, odd), c = (54m−1) or (74m−1).

From now on, we may assume that k ≥ 4.

Case 2.3 m = 2.
Using (10), we have 3 ≤ m1 + 2m2. Thus, m2 = 2 or m1 = m2 = 1.

Case 2.3.1 m2 = 2.
In this case, we have γ1 ≡ γ2 ≡ 2 (mod 3). By (3), we have

2
∑

αi ≡ 3s+ 2
∑

αi = n = 3p+ 2
∑

γj ≡ 2 (mod 3).

Thus,
∑

αi ≡ 1 (mod 3). By (10), we have 3 +
∑

αi ≤ 4, and so
∑

αi = 1. Then (12)
implies that n ≤ 3k + 2. Thus, a = (3k−12) or (3k−15), and we get c1 ≡ c2 ≡ 1 (mod 3)
from γ1 ≡ γ2 ≡ 2 (mod 3).

No.2: m = 2, a = (3k−12) or (3k−15), c1 ≡ c2 ≡ 1 (mod 3).

Case 2.3.2 m1 = m2 = 1.
By (10), we have

∑
αi = 0, and by (12) we have n ≤ 3k. Thus, a = (3k), and we get

{c1, c2} ≡ {1, 2} (mod 3) from m1 = m2 = 1.

No.3: m = 2, a = (3k), {c1, c2} ≡ {1, 2} (mod 3).

Case 2.4 m = 3.
By (10) and (12), we have

3(k + 1) ≤ n ≤ 3k + 2
∑

αi ≤ 3(k − 2) + 2m1 + 4m2, (15)

which implies 9 ≤ 2m1 + 4m2. Thus, we have “m1 = 1, m2 = 2,” or m2 = 3. Note that
ml := #{j : cj ≡ 2l (mod 3)}.
Case 2.4.1 m1 = 1, m2 = 2.
By (15), we have

n ≤ 3(k − 2) + 2 + 8 = (k + 1) + (k + 1) + (k + 2) = n ≡ 1 (mod 3).

Since n ≡ 2m1 + 4m2 = 10 ≡ 1 (mod 3), this implies n = 3k + 4, and we therefore get
s = k and

∑
αi = m1 + 2m2 − 3 = 2 from (15). Thus, a = (3k−17) or (3k−255). Since

c = (k + 1, k + 1, k + 2), we also have k ≡ 0 (mod 3) by the assumption that m1 = 2 and
m2 = 2.

No.6: m = 3, k ≡ 0 (mod 3), a = (3k−17) or (3k−255), c = (k + 1, k + 1, k + 2).

Case 2.4.2 m2 = 3.
By (9), we have

∑
αi ≤ 3, and by (12), we have n ≤ 3k + 6. Thus it follows that

c1 = c2 = c3 = k + 1, or c1 = c2 = c3 = k + 2, or {c1, c2, c3} = {k + 1, k + 1, k + 4}.
Case 2.4.2.1 c1 = c2 = c3 = k + 1.
Since n = 3k + 3 = 3s + 2

∑
αi ≤ 3s + 6, we have k − 1 ≤ s ≤ k. If s = k, then
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n = 3k + 2
∑

αi ≡ k (mod 2), which contradicts n = 3k + 3 ≡ k + 1 (mod 2). Thus, we
may assume that s = k − 1. Therefore a = (3k−3552) or (3k−254) or (3k−272) or (3k−16).

No.7: m = 3, k ≡ 0 (mod 3), a = (3k−3552) or (3k−254) or (3k−272) or (3k−16),

c = (k + 1, k + 1, k + 1).

Case 2.4.2.2 c1 = c2 = c3 = k + 2.
Since n = 3k+6 = 3s+2

∑
αi ≤ 3s+6, we have s = k. Thus, a = (3k−3555) or (3k−257)

or (3k−19).

No.8: m = 3, k ≡ 2 (mod 3), a = (3k−3555) or (3k−257) or (3k−19),

c = (k + 2, k + 2, k + 2).

Case 2.4.2.3 {c1, c2, c3} = {k + 1, k + 1, k + 4}.
Since n = 3k+6 = 3s+2

∑
αi ≤ 3s+6, we have s = k. Thus, a = (3k−3555) or (3k−257)

or (3k−19).

No.9: m = 3, k ≡ 0 (mod 3), a = (3k−3555) or (3k−257) or (3k−19),

c = (k + 1, k + 1, k + 4).

Case 2.5 m = 4.
By (12), we have

4(k + 1) ≤ n ≤ 3k + 10, (16)

and so k ≤ 6.

Case 2.5.1 k = 6.
By (16), we have n = 7× 4, and c = (7777), (p, s) = (4, 6).

No.12: m = 4, k = 6, a = (odd, odd, odd, odd, odd, odd), c = (7777).

Case 2.5.2 k = 5.
By (10) and (12), we have 24 ≤ n ≤ 3k + 2(m1 + 2m2 − 3), which implies

(m1,m2) = (0, 4). (17)

By (12), we have 24 ≤ n ≤ 25, and c = (6666) or (6667), but neither of these two
parameters satisfies (17).

Case 2.5.3 k = 4.
By (10) and (12), we have 20 ≤ n ≤ 3k + 2(m1 + 2m2 − 3), which implies

(m1,m2) = (1, 3) or (0, 4). (18)

By (12), we have 20 ≤ n ≤ 22, and c = (5555), (5556), (5557), or (5566), but none of
these parameters satisfy (18).

Case 2.6 m ≥ 5.
By (13), we have

5 ≤ m ≤ n

k + 1
≤ 3(k − 2)

k − 3
, (19)

and so k ≤ 4. If m ≥ 7 then (19) implies k ≤ 3. Thus, only possible cases are (m, k) =
(5, 4) or (6, 4).
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Case 2.6.1 (m, k) = (5, 4).
By (12), we have 25 ≤ n ≤ 26. Thus c = (55555) or (55556), but neither of these two
parameters satisfies p+ 2 ≤ s ≤ k = 4.

Case 2.6.2 (m, k) = (6, 4).
By (12), we have n = 30. Thus c = (555555), which contradicts p+ 2 ≤ s ≤ k = 4.

The same argument we used in the proof of Theorem 9 using Lemma 7 is also valid
for the proof of Theorem 5 using Lemma 4.

Proof of Theorem 2 Let v1, . . . , vk be given k vertices. We may assume a1 ≤ · · · ≤ ak.
We apply induction on k. The induction is trivially true at k = 1. Suppose that a1 ≤ 3.
In this case we choose a path P satisfying that |V (P )| = a1 and v1 is an endpoint of P
(and vi ̸∈ A1 for i ̸= 1). Since δ(G− V (P )) ≥ 3k − 3 = 3(k − 1), we can apply induction.

Next suppose that a1 ≥ 4. Choose k independent edges v1w1, . . . , vkwk in G. Delete
these 2k vertices. The remaining graph G′ has minimum degree at least k. If G′ is
connected, we can apply Theorem 1 to G′ and the partition n− 2k =

∑k
i=1(ai − 2).

Let C1, . . . , Cm be connected components of G′. We may suppose that m ≥ 2. Let
V := {v1, . . . , vk}, W := {w1, . . . , wk}, and cj := |Cj | for 1 ≤ j ≤ m. Suppose that
c1 ≥ c2 ≥ · · · ≥ cm. We choose W so that (c1, . . . , cm) is maximal with respect to the
lexicographic order. This order is defined by setting (c1, . . . , cm) > (d1, . . . , dl) (c1 ≥ · · · ≥
cm, d1 ≥ · · · ≥ dl) if there exists i such that cj = dj for all 1 ≤ j < i and ci > di. We
define lex(G−W ) := (c1, . . . , cm).

Let s ≤ t (i.e., cs ≥ ct). Choose x ∈ Cs and y ∈ Ct.

Lemma 12 If xwi ∈ E(G) then yvi ̸∈ E(G).

Proof Suppose, on the contrary, yvi ∈ E(G). Define w′
i := y and W ′ := W −{wi}∪{w′

i}.
Then lex(G−W ) < lex(G−W ′), which contradicts our assumption.

Lemma 13 |N(x) ∩W |+ |N(y) ∩ V | ≤ k holds for every x ∈ Cs and y ∈ Ct.

Proof Suppose, on the contrary, that |N(x)∩W |+|N(y)∩V | > k. Then by the pigeonhole
principle, there exists i such that xwi, yvi ∈ E(G). This contradicts Lemma 12.

Lemma 14 cs + ct ≥ 3k + 2.

Proof Since
3k ≤ d(x) ≤ |N(x) ∩ V |+ |N(x) ∩W |+ (cs − 1),

we have 2k ≤ |N(x)∩W |+ (cs − 1). In the same way, one has 2k ≤ |N(y)∩ V |+ (ct − 1).
Using the above two inequalities and Lemma 13, we have 4k ≤ k+ (cs − 1)+ (ct − 1), i.e.,
cs + ct ≥ 3k + 2.

We continue the proof of Theorem 2. Let n′ := n−2k and a′i := ai−2 for 1 ≤ i ≤ k. We
apply Theorem 5 to G′ and n′ =

∑
a′i. This way we can get an appropriate decomposition

except in the case of exceptional parameters. Note that we assume cs + ct ≥ 3k + 2 for
all s ̸= t. (Thus, we must have 2n = (c1 + c2) + (c2 + c3) + · · ·+ (cm + c1) ≥ m(3k + 2).)
Therefore it is sufficient to consider the following exceptional cases: No. 1, 2, 14, 16.

If cs + ct ≥ 4k + 2, then these exceptions can not occur. So we may assume that
cs + ct ≤ 4k + 1. Under this assumption, we have

6k ≤ d(x) + d(y) ≤ |N(x) ∩ (V ∪W )|+ |N(y) ∩ (V ∪W )|+ (cs − 1) + (ct − 1),
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that is,
2k + 1 ≤ |N(x) ∩ (V ∪W )|+ |N(y) ∩ (V ∪W )|.

By the pigeonhole principle, there exists i such that

|N(x) ∩ {vi, wi}|+ |N(y) ∩ {vi, wi}| ≥ 3.

Using Lemma 12, we may assume that xvi, ywi ∈ E(G).
Recall that we are considering the exceptional cases No. 1, 2, 14, 16. If Cs − {x} is

connected, then we can escape from these cases by setting w′
i := x, c′s := cs − 1, and

c′t := ct + 1. So we may assume that Cs − {x} is disconnected. Let D1, D2 be connected
components of Cs − {x}. Choose z1 ∈ D1, z2 ∈ D2. Then we have

d(z1) ≤ |N(z1) ∩ V |+ |N(z1) ∩W |+ |{x} ∪D1 − {z1}|
≤ |N(z1) ∩W |+ |D1|+ k,

d(y) ≤ |N(y) ∩ V |+ k + (ct − 1).

Using Lemma 13, the above inequalities imply

6k ≤ d(z1) + d(y) ≤ 3k + |D1|+ ct − 1,

that is 3k ≤ |D1|+ ct − 1. In the same way, we have 3k ≤ |D2|+ ct − 1. Consequently, we
have

6k ≤ |D1|+ |D2|+ 2ct − 2

≤ cs + 2ct − 3

≤ 4k − 2 + ct.

This implies ct ≥ 2k + 2, which contradicts our earlier assumption cs ≥ ct and cs + ct ≤
4k + 1.

This completes the proof of Theorem 2.

4 Open problem

Theorem 2 requires the condition δ(G) ≥ 3k. Is this condition sharp? The following
example shows that one can not replace this condition by δ(G) ≥ 3k − 3.

Example 15 Let G := K3k−2 ∪K3k−2, i.e., the disjoint union of two complete graphs of
order 3k−2. Choose v1, . . . , vk in the same connected component. Let a1 = · · · = ak−1 = 3,
ak = 3k− 1. Then any decomposition V (G) =

∪
Ai with |Ai| = ai, vi ∈ Ai contains some

j such that δ(<Aj>) = 0.

Problem 16 Does Theorem 2 hold under the assumption δ(G) ≥ 3k − 2?
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