Graph decompositions through prescribed vertices without isolates

Yoshimi Egawa
Department of Applied Mathematics
Science University of Tokyo
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162 Japan
Hikoe Enomoto
Department of Mathematics, Keio Univ., 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223 Japan
Norihide Tokushige
Department of Computer Science, Meiji Univ.,
1-1-1 Higashimita, Tama-ku, Kawasaki, 214 Japan

November 28, 1995

Abstract

Let G be a graph of order n, and let $n=\sum_{i=1}^{k} a_{i}$ be a partition of n with $a_{i} \geq 2$. Let v_{1}, \ldots, v_{k} be given distinct vertices of G. Suppose that the minimum degree of G is at least $3 k$. In this paper, we prove that there exists a decomposition of the vertex set $V(G)=\bigcup_{i=1}^{k} A_{i}$ such that $\left|A_{i}\right|=a_{i}, v_{i} \in A_{i}$, and the subgraph induced by A_{i} contains no isolated vertices for all $i, 1 \leq i \leq k$.

1 Introduction

All graphs considered in this paper are finite undirected graphs without loops or multiple edges. If G is a graph and $x \in V(G)$ (where $V(G)$ is the vertex set of G), the neighborhood $N(x)$ of x is the set of vertices adjacent to x, and the degree $d(x)$ of x is $|N(x)|$. The minimum degree of a graph G is

$$
\delta(G):=\min \{d(x): x \in V(G)\} .
$$

For a subset S of $V(G), N(S):=\bigcup_{x \in S} N(x),<S>$ denotes the subgraph of G induced by S, and $G-S:=<V(G)-S>$. The set $\{1, \ldots, n\}$ is denoted by $[n]$.

Let G be a graph of order $n, n=\sum_{i=1}^{k} a_{i}$ be a partition of n, and let \mathcal{P} be a property on a graph. We say that G has a decomposition property $\operatorname{DP}\left(n, k, \sum a_{i}, \mathcal{P}\right)$ if there exists a decomposition of the vertex set $V(G)=\bigcup_{i=1}^{k} A_{i}$ such that $\left|A_{i}\right|=a_{i}$ and $<A_{i}>$ satisfies \mathcal{P} for all $i, 1 \leq i \leq k$. We say that G has a strong decomposition property $\operatorname{SDP}\left(n, k, \sum a_{i}, \mathcal{P}\right)$ if, for arbitrary k vertices v_{1}, \ldots, v_{k} of G, there exists a decomposition $V(G)=\bigcup_{i=1}^{k} A_{i}$ satisfying $\operatorname{DP}\left(n, k, \sum a_{i}, \mathcal{P}\right)$ and $v_{i} \in A_{i}$ for all i.

Let us define two properties \mathcal{C} and \mathcal{I} on graphs. A graph G satisfies \mathcal{C} if G is connected. A graph G satisfies \mathcal{I} if G contains no isolated vertices. Let $n=\sum_{i=1}^{k} a_{i}$ be a partition of $n=|V(G)|$. The connectivity of G is denoted by $\kappa(G)$. Maurer proposed the following conjecture.

$$
\kappa(G) \geq k \Longrightarrow \operatorname{DP}\left(n, k, \sum a_{i}, \mathcal{C}\right)
$$

Frank posed a stronger conjecture.

$$
\kappa(G) \geq k \Longleftrightarrow \operatorname{SDP}\left(n, k, \sum a_{i}, \mathcal{C}\right) .
$$

Györi and Lovász proved the above conjecture independently. Another conjecture of Frank is the following. Suppose $a_{i} \neq 1$ for $1 \leq i \leq k$. Then,

$$
\delta(G) \geq k \Longrightarrow \mathrm{DP}\left(n, k, \sum a_{i}, \mathcal{I}\right)
$$

The above conjecture has been proved by Enomoto.
Theorem 1 Let G be a connected graph of order n, and let $n=\sum_{i=1}^{k} a_{i}$ be a partition of n with $1 \neq a_{i} \geq 0$. Suppose that $\delta(G) \geq k$. Then G satisfies $\operatorname{DP}\left(n, k, \sum a_{i}, \mathcal{I}\right)$.

The main purpose of the present paper is to prove the strong decomposition version of the above result, i.e.,

$$
\delta(G) \geq 3 k \Longrightarrow \operatorname{SDP}\left(n, k, \sum a_{i}, \mathcal{I}\right)
$$

More precisely, we prove the following.
Theorem 2 Let G be a graph of order n, and let $n=\sum_{i=1}^{k} a_{i}$ be a partition of n with $a_{i} \geq 2$. Suppose that $\delta(G) \geq 3 k$. Then G satisfies $\operatorname{SDP}\left(n, k, \sum a_{i}, \mathcal{I}\right)$.

As we will see in the last section, the condition imposed on the minimum degree in Theorem 2 is almost best possible.

Our proof of the above result is rather complicated because there are many cases. So, before we give the proof, we consider the following weaker but more easily proved result.

Theorem 3 Theorem 2 is true if $\delta(G) \geq 4 k-1$.
In section 2, we prove Theorem 3. The proof contains basic strategy for the proof of our main result. In section 3, we prove Theorem 2. In the proof, we use a lemma which is purely on integer partitions. To state the lemma, we need one more definition. Let $n=\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} c_{j}$ be partitions of n. We say that $\sum a_{i}$ fits $\sum c_{j}$ if there exist decompositions $[n]=\bigcup_{i=1}^{k} A_{i}=\bigcup_{j=1}^{m} C_{j}$ such that $\left|A_{i}\right|=a_{i},\left|C_{j}\right|=c_{j}$, and $\left|A_{i} \cap C_{j}\right| \neq 1$ for all $1 \leq i \leq k$ and $1 \leq j \leq m$.

Lemma 4 Let k, m, n be positive integers, and let $n=\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} c_{j}$ be partitions of n with $a_{i} \geq 2$ for $1 \leq i \leq k$, and $c_{j} \geq k+1$ for $1 \leq j \leq m$. Then $\sum a_{i}$ fits $\sum c_{j}$ if and only if the two partitions are different from those in the following table.

Table of Exceptions

No.	m	k	$a=\left(a_{1}, \ldots, a_{k}\right)$	$c=\left(c_{1}, \ldots, c_{m}\right)$
1	2	$k_{2} \geq 1$	$\left(2^{k_{1}} 4^{k_{2}}\right)$	(odd, odd)
2	2		$\left(23^{k-1}\right),\left(3^{k-1} 5\right)$	$c_{1} \equiv c_{2} \equiv 1 \quad(\bmod 3)$
3	2		$\left(3^{k}\right)$	$c_{1} \equiv 1, c_{2} \equiv 2(\bmod 3)$
4	3	$k_{2} \geq k_{1}+3$	$\left(2^{k_{1}} 4^{k_{2}}\right)$	(odd, odd, even)
5	3	$k_{2} \geq k_{1}$	$\left(2^{k_{1}} 34^{k_{2}}\right),\left(2^{k_{1}-1} 4^{k_{2}} 5\right),\left(2^{k_{1}} 4^{k_{2}-1} 7\right)$	(odd, odd, odd)
6	3	$k \equiv 0(\bmod 3)$	$\left(3^{k-1} 7\right),\left(3^{k-2} 55\right)$	$(k+1, k+1, k+2)$
7	3	$k \equiv 0(\bmod 3)$	$\left(23^{k-3} 55\right),\left(3^{k-2} 45\right),\left(23^{k-2} 7\right),\left(3^{k-1} 6\right)$	$(k+1, k+1, k+1)$
8	3	$k \equiv 2(\bmod 3)$	$\left(3^{k-3} 555\right),\left(3^{k-2} 57\right),\left(3^{k-1} 9\right)$	$(k+2, k+2, k+2)$
9	3	$k \equiv 0(\bmod 3)$	$\left(3^{k-3} 555\right),\left(3^{k-2} 57\right),\left(3^{k-1} 9\right)$	$(k+1, k+1, k+4)$
10	4	$k=\operatorname{even}$	$\left(4^{k-1}, 10\right),\left(4^{k-2} 77\right)$	$(k+1, k+1, k+1, k+3)$
11	4	$k=\operatorname{even}$	$\left(2,4^{k-2}, 10\right),\left(4^{k-1} 8\right),\left(4^{k-2} 57\right),\left(24^{k-3} 77\right)$	$(k+1, k+1, k+1, k+1)$
12	4	6	$($ odd, odd, odd, odd, odd, odd)	(7777)
13	5	4	$(4,4,7,10),(4,4,4,13),(4777)$	(55555)
14	m	2	$a_{1} \equiv a_{2} \equiv 1 \quad(\bmod 3)$	$\left(3^{m-1} 5\right)$
15	m	2	$a_{1} \equiv 1, a_{2} \equiv 2(\bmod 3)$	$\left(3^{m}\right)$
16	m	2	$($ odd, odd $)$	$\left(4^{m}\right)$
17	m	3	$($ odd, odd, even $)$	$\left(4^{m}\right)$
18	m	3	(odd, odd, odd)	$\left(4^{m-1} 5\right),\left(4^{m-1} 7\right)$

(In the table, $a=\left(2^{k_{1}} 4^{k_{2}}\right.$) means $a_{1}=\cdots=a_{k_{1}}=2, a_{k_{1}+1}=\cdots=a_{k}=4, k_{1}+k_{2}=k$; and $a=\left(2^{k-2} 77\right)$ means $a_{1}=\cdots=a_{k-2}=2, a_{k-1}=a_{k}=7$, etc.)
To exclude overlaps in the table, we may add the following assumptions:

$$
k \geq 3 \text { in No. } 1,4,5,10,11 . \quad k \geq 4 \text { in No. } 2,3,6,7,8,9
$$

Using the above lemma, we obtain a disconnected version of Theorem 1.
Theorem 5 Let G be a graph of order n, and let $n=\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} c_{j}$ be partitions of n with $a_{i} \geq 2$. Suppose that $\delta(G) \geq k$ and the orders of connected components of G are c_{1}, \ldots, c_{m}. Then G satisfies $\operatorname{DP}\left(n, k, \sum a_{i}, \mathcal{I}\right)$ if and only if the two partitions are different from those in the table of exceptions (see Lemma 4).

By checking the table of exceptions, Theorem 5 implies the following.
Corollary 6 Let G be a graph of order n, and let $n=\sum_{i=1}^{k} a_{i}$ be a partition of n with $a_{i} \geq 2$. Suppose that $\delta(G) \geq k$. Further, suppose that $n \geq 26$ and $k=4$, or $n \geq 4 k+7$ and $k \geq 5$. Then G satisfies $\operatorname{DP}\left(n, k, \sum a_{i}, \mathcal{I}\right)$.

2 The case of large minimum degree

In this section, we prove Theorem 3. First we prove a key technical lemma.
Lemma 7 Let k, m, n be positive integers, and let $n=\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} c_{j}$ be partitions of n with $a_{i} \geq 2$ for all $1 \leq i \leq k$, and $c_{j} \geq 2 k$ for all $1 \leq j \leq m$. Then $\sum a_{i}$ fits $\sum c_{j}$ unless " $k=2, c_{1}=\cdots=c_{m}=4$, and a_{1} odd."

Proof The lemma is true for $k=1$, and also true for " $k=2, c_{1}=\cdots=c_{m}=4$ and a_{1} even." Let $[n]=\bigcup_{j=1}^{m} C_{j}$ be a decomposition with $\left|C_{j}\right|=c_{j}$ for $1 \leq j \leq m$. Applying induction on k, we shall find a decomposition $[n]=\bigcup_{i=1}^{k} A_{i}$ with $\left|A_{i}\right|=a_{i}$ such that $\left|A_{i} \cap C_{j}\right| \neq 1$ for all i and j. Note that the exception occurs only if $n=2 m k$.

Now we may assume that $k \geq 3$ or ($k=2$ and) $c_{1}>4$. Suppose $a_{1} \leq \cdots \leq a_{k}$ and set $\epsilon_{j}:=c_{j}-2(k-1)$ for $1 \leq j \leq m$. Note that $\epsilon_{j} \geq 2$. Also it follows that

$$
\sum_{j=1}^{m} \epsilon_{j}=n-2 m(k-1)=\left(1-\frac{1}{k}\right)(n-2 k m)+\frac{n}{k} \geq \frac{n}{k} \geq a_{1}
$$

For $1 \leq j \leq m$, we choose $D_{j} \subset C_{j}$ such that $\left|D_{j}\right|=\epsilon_{j}$.
Case 1 There exists j_{0} such that $\epsilon_{j_{0}} \geq 3$.
In $\bigcup_{j=1}^{m} D_{j}$, we will choose A_{1} with $\left|A_{1}\right|=a_{1}$ such that $\left|A_{1} \cap C_{j}\right| \neq 1$ for all $1 \leq j \leq m$. We may assume that $\epsilon_{1} \geq 3$ and $D_{1} \supset\{x, y, z\}$. Let $a_{1}=\sum_{j=1}^{s} \epsilon_{j}+\delta$ where $1 \leq \delta \leq \epsilon_{s+1}$, $0 \leq s<m$. Choose $D^{\prime} \subset D_{s+1}$ with $\left|D^{\prime}\right|=\delta$ and define $A:=\left(\bigcup_{j=1}^{s} D_{j}\right) \cup D^{\prime}$. If $\delta \geq 2$ then set $A_{1}:=A$. If $\delta=1$ then choose $w \in D_{s+1}-D^{\prime}$ and set $A_{1}:=(A-\{x\}) \cup\{w\}$. Now we can apply induction to partitions $n-a_{1}=\sum_{i=2}^{k} a_{i}=\sum_{j=1}^{m}\left|C_{j}-A_{1}\right|$. (Since $n=\sum \epsilon_{j}+2 m(k-1)>2 m k$, and $a_{1} \leq \ldots \leq a_{k}$, one has $n-a_{1}>2 m(k-1)$. Thus, the exception does not occur in the induction step.)
Case 2 For all $1 \leq j \leq m, \epsilon_{j}=2$. I.e., $c_{1}=\cdots=c_{m}=2 k$.
By our assumption, $k \geq 3$. If $a_{1}=2 m$ then $a_{1}=\cdots=a_{k}=2 m$ holds. So the desired decomposition is trivial in this case. Now we may assume $a_{1}<2 m$. We choose $x_{1}^{j}, x_{2}^{j}, y_{1}^{j}, y_{2}^{j} \in C_{j}$ for $1 \leq j \leq m$. If $a_{1}=2 s(s<m)$ then we set $A_{1}:=\bigcup_{j=1}^{s}\left\{x_{1}^{j}, x_{2}^{j}\right\}$ and apply induction. (Since $n-a_{1}>2 m(k-1)$, the exception does not occur in the induction step.) So we may assume $a_{1}=2 s+1, s<m$. Define $A_{1}:=\left(\bigcup_{j=1}^{s}\left\{x_{1}^{j}, x_{2}^{j}\right\}\right) \cup\left\{y_{1}^{1}\right\}$. Note that $a_{2} \leq\left|\left(\bigcup_{j=2}^{s}\left\{y_{1}^{j}, y_{2}^{j}\right\}\right) \cup\left(\bigcup_{j=s+1}^{m}\left\{x_{1}^{j}, x_{2}^{j}, y_{1}^{j}, y_{2}^{j}\right\}\right)\right|$. Thus, using the same argument as in the previous case, we can choose an appropriate A_{2}. Note that $n-a_{1}-a_{2}>2 m(k-2)$. Thus we can apply induction to partitions $n-a_{1}-a_{2}=\sum_{i=3}^{k} a_{i}=\sum_{j=1}^{m}\left|C_{j}-A_{1}-A_{2}\right|$.

Example 8 Let $m=2, a_{1}=2, a_{2}=\cdots=a_{k}=4$, and $c_{1}=c_{2}=2 k-1$. Then $\sum a_{i}$ does not fit $\sum c_{j}$.

Using the lemma we prove a disconnected version of Theorem 1.
Theorem 9 Let G be a graph of order n, and $n=\sum_{i=1}^{k} a_{i}$ be a partition of n with $a_{i} \geq 2$. Suppose that $\delta(G) \geq k$, and every connected component of G has at least $2 k$ vertices. Then G satisfies $\operatorname{DP}\left(n, k, \sum a_{i}, \mathcal{I}\right)$ unless " $k=2, a_{1}$ is odd, and every connected component of G is order 4."

Proof Let C_{1}, \ldots, C_{m} be connected components of G with $c_{j}:=\left|C_{j}\right| \geq 2 k$ for $1 \leq j \leq m$. Using the lemma, we can find a decomposition $V(G)=\bigcup_{i=1}^{k} B_{i}$ such that $\left|B_{i}\right|=a_{i}$ and $a_{i j}:=\left|B_{i} \cap C_{j}\right| \neq 1$. Let us consider C_{j}. Applying Theorem 1 to C_{j} and $c_{j}=\sum_{i=1}^{k} a_{i j}$, we see that $\left\langle C_{j}\right\rangle$ satisfies $\operatorname{DP}\left(c_{j}, k, \sum a_{i j}, \mathcal{I}\right)$, and hence there is a partition $C_{j}=\bigcup_{i=1}^{k} A_{i j}$ such that $\left|A_{i j}\right|=a_{i j}$ and $\left.\delta\left(<A_{i j}\right\rangle\right) \geq 1$ for all i. Now define $A_{i}:=\bigcup_{j=1}^{m} A_{i j}$. Then we get a desired decomposition $V(G)=\bigcup_{i=1}^{k} A_{i}$.

The same argument is valid for the proof of "Lemma 4 implies Theorem 5."

Proof of Theorem 3 Let v_{1}, \ldots, v_{k} be given distinct vertices. We may assume $a_{1} \leq$ $\cdots \leq a_{k}$. Suppose that $a_{1} \leq 3$. In this case we choose a path P in $G-\left\{v_{2}, \ldots, v_{k}\right\}$ satisfying that $|V(P)|=a_{1}$ and v_{1} is an endpoint of P. Since $\delta(G-V(P)) \geq(4 k-1)-3>4(k-1)-1$, we can apply induction.

Next suppose that $a_{1} \geq 4$. Choose k independent edges $v_{1} w_{1}, \ldots, v_{k} w_{k}$ in G. Delete these $2 k$ vertices. The remaining graph G^{\prime} satisfies $\delta\left(G^{\prime}\right) \geq 2 k-1$. Thus every connected component of G^{\prime} has at least $2 k$ vertices. First we consider the exceptional case. Let $W:=\left\{v_{1}, w_{1}, v_{2}, w_{2}\right\}$. Note that every connected component of $G-W$ is order 4 , and $\delta(G) \geq 4 k-1=7$ in this case. Thus, every $x \in W$ and $y \in V(G)-W$ are adjacent. Therefore, we can easily get a desired decomposition.

Now we may assume that G^{\prime} is not the exceptional case. Applying Theorem 9 to G^{\prime} and the partition $n-2 k=\sum_{i=1}^{k}\left(a_{i}-2\right)$, we get an appropriate decomposition $V\left(G^{\prime}\right)=\bigcup_{i=1}^{k} A_{i}^{\prime}$. Define $A_{i}:=A_{i}^{\prime} \cup\left\{v_{i}, w_{i}\right\}$. Then we obtain a desired decomposition $V(G)=\bigcup_{i=1}^{k} A_{i}$.

3 Proof of the main result

In this section, we prove Theorem 2.
A partition $n=\sum_{i=1}^{k} a_{i}$ is called $\{2,3\}$-partition if $a_{i} \in\{2,3\}$ for all $1 \leq i \leq k$. There is a unique $\{2,3\}$-partition for $n=2,3,4,5,7$, and there are two $\{2,3\}$-partitions for $n=6$. For a given partition $n=\sum_{i=1}^{k} b_{i}$, a refinement of this partition $n=\sum_{i=1}^{k} \sum_{j=1}^{k_{i}} a_{i, j}$ $\left(b_{i}=\sum_{j=1}^{k_{i}} a_{i, j}\right)$ is called a $\{2,3\}$-refinement if $a_{i, j} \in\{2,3\}$ for all i and j. The next lemma immediately follows from definitions.

Lemma 10 Let $n=\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} c_{j}$ be partitions of n. Then $\sum a_{i}$ fits $\sum c_{j}$ if and only if there exists a common $\{2,3\}$-refinement of these partitions.

The following lemma gives a necessary and sufficient conditions for fitness.
Lemma 11 Let $n=\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} c_{j}$ be partitions of n. Suppose that a_{1}, \ldots, a_{s} are odd and a_{s+1}, \ldots, a_{k} are even, and suppose that c_{1}, \ldots, c_{p} are odd and c_{p+1}, \ldots, c_{m} are even. Further suppose that $a_{i}, c_{j} \geq 2$ for all i, j. Set

$$
\begin{aligned}
b_{i} & := \begin{cases}a_{i}-3 & 1 \leq i \leq s \\
a_{i} & s<i \leq k,\end{cases} \\
d_{j} & := \begin{cases}c_{j}-3 & 1 \leq j \leq p \\
c_{j} & p<j \leq m .\end{cases}
\end{aligned}
$$

Then the following hold.
(i) If $s=p$ then $\sum a_{i}$ fits $\sum c_{j}$.
(ii) If $s<p$ then $\sum a_{i}$ fits $\sum c_{j}$ iff $\sum_{i=1}^{k}\left\lfloor b_{i} / 6\right\rfloor \geq(p-s) / 2$.
(iii) If $s>p$ then $\sum a_{i}$ fits $\sum c_{j}$ iff $\sum_{j=1}^{m}\left\lfloor d_{j} / 6\right\rfloor \geq(s-p) / 2$.

Proof Note that both b_{i} and d_{j} are even. Since

$$
n=3 s+\sum_{i=1}^{k} b_{i}=3 p+\sum_{j=1}^{m} d_{j},
$$

we have $s \equiv p(\bmod .2)$.
(i) In this case, $n=2 \times \frac{n-3 s}{2}+3 \times s$ is a common $\{2,3\}$-refinement.
(ii) Suppose that $\sum_{i=1}^{k}\left\lfloor b_{i} / 6\right\rfloor \geq(p-s) / 2$. Then $n-3 s=\sum_{i=1}^{k} b_{i}=2 \times \frac{n-3 p}{2}+3 \times(p-s)$ is a $\{2,3\}$-refinement of $\sum_{i=1}^{k} b_{i}$. Thus, $n=2 \times \frac{n-3 p}{2}+3 \times p$ is a common $\{2,3\}$-refinement of $n=\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} c_{j}$.

Now suppose that there exists a common $\{2,3\}$-refinement for $\sum a_{i}=\sum c_{j}$. Let m_{i} be the number of 3 s used in the refinement of a_{i}, i.e., $a_{i}=2 \times \frac{n-3 m_{i}}{2}+3 \times m_{i}$. Then m_{i} is odd for $1 \leq i \leq s$, and m_{i} is even for $s<i \leq k$. Thus, we have $\left(m_{i}-1\right) / 2 \leq b_{i} / 6$ for $i \leq s$, and $m_{i} / 2 \leq b_{i} / 6$ for $i>s$. On the other hand, $\sum_{i=1}^{k} m_{i} \geq p$ holds. Therefore,

$$
\sum_{i=1}^{k}\left\lfloor b_{i} / 6\right\rfloor \geq \sum_{i=1}^{s}\left(m_{i}-1\right) / 2+\sum_{i=s+1}^{k} m_{i} / 2 \geq(p-s) / 2
$$

(iii) Same as the previous case.

Now we prove Lemma 4.
Proof Suppose that a_{1}, \ldots, a_{s} are odd and a_{s+1}, \ldots, a_{k} are even, where $0 \leq s \leq k$, and suppose that c_{1}, \ldots, c_{p} are odd and c_{p+1}, \ldots, c_{m} are even, where $0 \leq p \leq m$. Define b_{i} and d_{j} as in Lemma 11. Note that both b_{i} and d_{j} are even, and $s \equiv p(\bmod 2)$. By Lemma 11, we can find an appropriate decomposition iff

$$
\begin{array}{ll}
s=p & \text { or } \\
s<p & \text { and } \quad \sum_{i=1}^{k}\left\lfloor b_{i} / 6\right\rfloor \geq(p-s) / 2 \quad \text { or } \\
s>p & \text { and } \quad \sum_{j=1}^{m}\left\lfloor d_{j} / 6\right\rfloor \geq(s-p) / 2 \tag{2}
\end{array}
$$

From now on, we classify all exceptional parameters. Let $b_{i}=2 \alpha_{i}$ for $1 \leq i \leq k$, and $d_{j}=2 \gamma_{j}$ for $1 \leq j \leq m$. If $c_{j} \geq k+1$ is odd then $\gamma_{j}=d_{j} / 2=\left(c_{j}-3\right) / 2 \geq(k-2) / 2$, otherwise $\gamma_{j} \geq(k+1) / 2$. Since

$$
\begin{equation*}
n=3 s+2 \sum_{i=1}^{k} \alpha_{i}=3 p+2 \sum_{j=1}^{m} \gamma_{j} \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
p-s=\frac{2}{3}\left(\sum_{i=1}^{k} \alpha_{i}-\sum_{j=1}^{m} \gamma_{j}\right) \tag{4}
\end{equation*}
$$

Case $1 s<p$.
By (1) and (4), exceptions occur if and only if

$$
\sum_{i=1}^{k}\left\lfloor\alpha_{i} / 3\right\rfloor \leq\left(\sum_{i=1}^{k} \alpha_{i}-\sum_{j=1}^{m} \gamma_{j}\right) / 3-1
$$

or equivalently,

$$
3+\sum \gamma_{j} \leq \sum\left(\alpha_{i}-3\left\lfloor\frac{\alpha_{i}}{3}\right\rfloor\right)
$$

Let $k_{l}:=\#\left\{i: \alpha_{i} \equiv l(\bmod 3)\right\}$. Note that $k_{0}+k_{1}+k_{2}=k$. Consequently, exceptions occur if and only if

$$
\begin{equation*}
3+\sum \gamma_{j} \leq k_{1}+2 k_{2} \tag{5}
\end{equation*}
$$

If $s=0$, then

$$
2 k_{1}+4 k_{2}+6 k_{0} \leq 2 \sum \alpha_{i}=n=3 p+2 \sum \gamma_{j} \leq 3(p-2)+2 k_{1}+4 k_{2},
$$

which implies $2 k_{0} \leq p-2$. Further, if $p=2$ then

$$
\begin{equation*}
n=2 k_{1}+4 k_{2} . \quad(\text { if } s=0, p=2) \tag{6}
\end{equation*}
$$

Case $1.1 k=2$.
By (5) and $k_{1}+k_{2}=2$, we have $\left(k_{1}, k_{2}\right)=(0,2)$ or $(1,1)$.
Case 1.1.1 $k_{2}=2$.
Since $\alpha_{1} \equiv \alpha_{2} \equiv 2(\bmod 3)$, we have $b_{1} \equiv b_{2} \equiv 4(\bmod 6)$ and $a_{1} \equiv a_{2} \equiv 1(\bmod 3)$. Thus,

$$
n \equiv a_{1}+a_{2} \equiv 2 \quad(\bmod 3) .
$$

This together with (5), i.e., $\sum \gamma_{j} \leq 1$ implies $c=\left(3^{m-1} 5\right)$.

$$
\text { No.14: } k=2, a_{1} \equiv a_{2} \equiv 1(\bmod 3), c=\left(3^{m-1} 5\right) .
$$

Case 1.1.2 $k_{1}=k_{2}=1$.
By (5), we have $\sum \gamma_{j}=0$, and $c=\left(3^{m}\right)$.

$$
\text { No.15: } k=2,\left\{a_{1}, a_{2}\right\} \equiv\{1,2\}(\bmod 3), c=\left(3^{m}\right) .
$$

From now on, we may assume $k \geq 3$.
Case $1.2 m=2$.
Since $2 \leq 2+s \leq p \leq m=2$, we have $s=0, p=2$. By (6), $n=2 k_{1}+4 k_{2}$. (Since $2 k_{1}+4 k_{2}=n \geq 2(k+1)=2\left(k_{1}+k_{2}+1\right)$, we have $k_{2} \geq 1$.)

$$
\text { No.1: } m=2, a=\left(2^{k_{1}} 4^{k_{2}}\right), c=(\text { odd, odd }) .
$$

Case $1.3 m=3$.
Since $2 \leq 2+s \leq p \leq m=3$, we have " $s=0, p=2$ " or " $s=1, p=3$."
Case 1.3.1 $s=0, p=2$.
By (6), we have $n=2 k_{1}+4 k_{2}$. (Since $2 k_{1}+4 k_{2} \geq 3\left(k_{1}+k_{2}+1\right)$, we have $k_{2} \geq k_{1}+3$.)

$$
\text { No.4: } m=3, a=\left(2^{k_{1}} 4^{k_{2}}\right), c=\text { (odd, odd, even). }
$$

Case 1.3.2 $s=1, p=3$.
By (5), we have

$$
\begin{equation*}
\sum \gamma_{j} \leq k_{1}+2 k_{2}-3 \tag{7}
\end{equation*}
$$

Case 1.3.2.1 $k_{0}=0$.
Using (3) and (7), we have

$$
3+2 k_{1}+4 k_{2} \leq 3+2 \sum \alpha_{i}=n=9+2 \sum \gamma_{j} \leq 3+2 k_{1}+4 k_{2} .
$$

This implies $n=3+2 k_{1}+4 k_{2}$. (Since $3+2 k_{1}+4 k_{2} \geq 3\left(k_{1}+k_{2}+1\right)$, we have $k_{2} \geq k_{1}$.)

$$
\text { No.5: } m=3, a=\left(52^{k_{1}-1} 4^{k_{2}}\right) \text { or }\left(72^{k_{1}} 4^{k_{2}-1}\right), c=(\text { odd, odd, odd }) \text {. }
$$

Case 1.3.2.2 $k_{0} \geq 1$.
Using (3) and (7), we have

$$
3+2 k_{1}+4 k_{2}+6\left(k_{0}-1\right) \leq 3+2 \sum \alpha_{i}=n=9+2 \sum \gamma_{j} \leq 3+2 k_{1}+4 k_{2}
$$

This implies $k_{0}=1$ and $n=3+2 k_{1}+4 k_{2} .\left(k_{2} \geq k_{1}.\right)$

$$
\text { No.5: } m=3, a=\left(32^{k_{1}} 4^{k_{2}}\right), c=(\text { odd, odd, odd })
$$

Case $1.4 m=4$.
First suppose $p \leq 3$. Then,

$$
\begin{aligned}
\text { LHS of }(5) & \geq 3+3 \times \frac{k-2}{2}+\frac{k+1}{2}=2 k+\frac{1}{2} \\
\text { RHS of }(5) & \leq 2 k,
\end{aligned}
$$

a contradiction. So, we may assume that $p=4$, which implies $s=0$ or 2 . Now we have

$$
\begin{align*}
\text { LHS of }(5) & \geq 3+4 \times \frac{k-2}{2}=2 k-1 \tag{8}\\
\text { RHS of }(5) & \leq\left(k-k_{2}\right)+2 k_{2}=k+k_{2} \tag{9}
\end{align*}
$$

Thus, we have $k_{2}=k$ or " $k_{2}=k-1, k_{1}=1$."
Case 1.4.1 $k_{2}=k$.
By (8) and (9), we have $2 k-1 \leq 3+\sum \gamma_{j} \leq 2 k$. Thus, k is even and " $\gamma_{1}=\gamma_{2}=\gamma_{3}=$ $\gamma_{4}=(k-2) / 2$ " or " $\gamma_{1}=\gamma_{2}=\gamma_{3}=(k-2) / 2, \gamma_{4}=k / 2$."
Case 1.4.1.1 $\gamma_{1}=\gamma_{2}=\gamma_{3}=\gamma_{4}=(k-2) / 2$.
Since $c_{1}=c_{2}=c_{3}=c_{4}=k+1$, we have $n=4(k+1) \equiv k+1(\bmod 3)$. On the other hand, using $\alpha_{i} \equiv 2(\bmod 3)$, we have

$$
n=3 s+\sum a_{i} \equiv \sum a_{i} \equiv 2 \sum \alpha_{i} \equiv 4 k \equiv k \quad(\bmod 3)
$$

This is a contradiction.
Case 1.4.1.2 $\gamma_{1}=\gamma_{2}=\gamma_{3}=(k-2) / 2, \gamma_{4}=k / 2$.
In this case, we have $c_{1}=c_{2}=c_{3}=k+1, c_{4}=k+3$, and $n=4 k+6$. If $s=0$ then $a=\left(4^{k-1}, 10\right)$, if $s=2$ then $a=\left(774^{k-2}\right)$.

$$
\text { No.10: } m=4, k=\text { even, } a=\left(4^{k-1}, 10\right) \text { or }\left(774^{k-2}\right), c=(k+1, k+1, k+1, k+3)
$$

Case 1.4.2 $k_{1}=1, k_{2}=k-1$.
By (8) and (9), we have $2 k-1 \leq 3+\sum \gamma_{j} \leq 2 k-1$. This implies that k is even and $\gamma_{1}=\gamma_{2}=\gamma_{3}=\gamma_{4}=(k-2) / 2$. Thus, $c_{1}=c_{2}=c_{3}=c_{4}=k+1$ and $n=4(k+1)$. If $s=0$ then $a=\left(24^{k-2}, 10\right)$ or $\left(4^{k-1} 8\right)$, if $s=2$ then $a=\left(574^{k-2}\right)$ or $\left(7724^{k-3}\right)$.

$$
\text { No.11: } m=4, k=\text { even, } a=\left(24^{k-2}, 10\right) \text { or } a=\left(4^{k-1} 8\right) \text { or }\left(574^{k-2}\right) \text { or }\left(7724^{k-3}\right)
$$ $c=(k+1, k+1, k+1, k+1)$.

Case $1.5 m=5$.
By (5), we have $3+5 \times \frac{k-2}{2} \leq 3+\sum \gamma_{j} \leq k_{1}+2 k_{2} \leq 2 k$, and so $k \leq 4$. If $k=3$, then using $\gamma_{j} \geq 1$, we get $8 \leq 3+\sum \gamma_{j} \leq 2 k=6$, a contradiction. Thus we may assume that
$k=4$. Then we have $\gamma_{1}=\cdots=\gamma_{5}=1, k_{2}=4, p=5$. Since $s \leq p-2=3$, we have $s=1$ or 3. If $s=1$ then $a=(744,10)$ or $(13,4,4,4)$, if $s=3$ then $a=(7774)$.

$$
\begin{aligned}
& \text { No.13: } m=5, k=4, a=(447,10),(13,4,4,4) \text { or }(7774), \\
& c=(55555) .
\end{aligned}
$$

Case $1.6 m \geq 6$.
By (5), we have $3+6 \times \frac{k-2}{2} \leq 3+\sum \gamma_{j} \leq k_{1}+2 k_{2} \leq 2 k$, and so $k=3$. Using $\gamma_{j} \geq 1$, we get $9 \leq 3+\sum \gamma_{j} \leq 2 k=6$, a contradiction.

Case $2 s>p$.
By (2) and (4), exceptions occur if and only if

$$
\sum_{j=1}^{m}\left\lfloor\gamma_{j} / 3\right\rfloor \leq\left(\sum_{j=1}^{m} \gamma_{j}-\sum_{i=1}^{k} \alpha_{i}\right) / 3-1
$$

or equivalently,

$$
3+\sum \alpha_{i} \leq \sum\left(\gamma_{j}-3\left\lfloor\gamma_{j} / 3\right\rfloor\right)
$$

Let $m_{l}:=\#\left\{j: \gamma_{j} \equiv l(\bmod 3)\right\}$. Note that $m_{0}+m_{1}+m_{2}=m$. Consequently, exceptions occur if and only if

$$
\begin{equation*}
3+\sum \alpha_{i} \leq m_{1}+2 m_{2} \tag{10}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
3+\sum \alpha_{i} \leq m_{1}+2 m_{2} \leq 2 m \leq \frac{2 n}{k+1} \tag{11}
\end{equation*}
$$

By (3) and $s \leq k$, we have

$$
\begin{equation*}
(k+1) m \leq \sum c_{j}=n \leq 3 k+2 \sum \alpha_{i} \leq 3 k+2(2 m-3) \tag{12}
\end{equation*}
$$

By (11) and (12), one has

$$
\begin{equation*}
\frac{n-3 k}{2} \leq \sum \alpha_{i} \leq \frac{2 n}{k+1}-3 \tag{13}
\end{equation*}
$$

Case $2.1 k=2$.
Since $s \geq p+2 \geq 2$, we have $a_{1} \equiv a_{2} \equiv 1(\bmod 2)$ and $a_{1}=2 \alpha_{1}+3, a_{2}=2 \alpha_{2}+3$. By (10), we have

$$
3+\alpha_{1}+\alpha_{2}=\frac{n}{2} \leq m_{1}+2 m_{2}
$$

which implies $c=\left(4^{m}\right)$.

$$
\text { No.16: } k=2, a=(\text { odd }, \text { odd }), c=\left(4^{m}\right)
$$

Case $2.2 k=3$.
By (12), we have

$$
\begin{equation*}
4 m \leq n \leq 4 m+3 \tag{14}
\end{equation*}
$$

Since $p+2 \leq s \leq k=3$, we have $(p, s)=(0,2)$ or $(1,3)$. If $p=0$ then $4 m \leq n=$ $3 s+2 \sum \alpha_{i} \leq 4 m$, and so $c=\left(4^{m}\right)$. Now we may assume $p=1$. In general,

$$
4 m \leq n \leq 3 k+2 \sum \alpha_{i} \leq 9+2\left(m_{1}+2 m_{2}-3\right) \leq 3+2 m+2 m_{2}
$$

which implies $m_{2} \geq m-1$. This together with (14) implies $c=\left(54^{m-1}\right)$ or $\left(74^{m-1}\right)$.

$$
\text { No.17: } k=3, a=(\text { odd, odd, even }), c=\left(4^{m}\right)
$$

$$
\text { No.18: } k=3, a=(\text { odd, odd, odd }), c=\left(54^{m-1}\right) \text { or }\left(74^{m-1}\right) .
$$

From now on, we may assume that $k \geq 4$.
Case $2.3 m=2$.
Using (10), we have $3 \leq m_{1}+2 m_{2}$. Thus, $m_{2}=2$ or $m_{1}=m_{2}=1$.
Case 2.3.1 $m_{2}=2$.
In this case, we have $\gamma_{1} \equiv \gamma_{2} \equiv 2(\bmod 3)$. By (3), we have

$$
2 \sum \alpha_{i} \equiv 3 s+2 \sum \alpha_{i}=n=3 p+2 \sum \gamma_{j} \equiv 2 \quad(\bmod 3)
$$

Thus, $\sum \alpha_{i} \equiv 1(\bmod 3)$. By (10), we have $3+\sum \alpha_{i} \leq 4$, and so $\sum \alpha_{i}=1$. Then (12) implies that $n \leq 3 k+2$. Thus, $a=\left(3^{k-1} 2\right)$ or $\left(3^{k-1} 5\right)$, and we get $c_{1} \equiv c_{2} \equiv 1(\bmod 3)$ from $\gamma_{1} \equiv \gamma_{2} \equiv 2(\bmod 3)$.

$$
\text { No.2: } m=2, a=\left(3^{k-1} 2\right) \text { or }\left(3^{k-1} 5\right), c_{1} \equiv c_{2} \equiv 1(\bmod 3)
$$

Case 2.3.2 $m_{1}=m_{2}=1$.
By (10), we have $\sum \alpha_{i}=0$, and by (12) we have $n \leq 3 k$. Thus, $a=\left(3^{k}\right)$, and we get $\left\{c_{1}, c_{2}\right\} \equiv\{1,2\}(\bmod 3)$ from $m_{1}=m_{2}=1$.

$$
\text { No.3: } m=2, a=\left(3^{k}\right),\left\{c_{1}, c_{2}\right\} \equiv\{1,2\}(\bmod 3)
$$

Case $2.4 m=3$.
By (10) and (12), we have

$$
\begin{equation*}
3(k+1) \leq n \leq 3 k+2 \sum \alpha_{i} \leq 3(k-2)+2 m_{1}+4 m_{2} \tag{15}
\end{equation*}
$$

which implies $9 \leq 2 m_{1}+4 m_{2}$. Thus, we have " $m_{1}=1, m_{2}=2$," or $m_{2}=3$. Note that $m_{l}:=\#\left\{j: c_{j} \equiv 2 l(\bmod 3)\right\}$.
Case 2.4.1 $m_{1}=1, m_{2}=2$.
By (15), we have

$$
n \leq 3(k-2)+2+8=(k+1)+(k+1)+(k+2)=n \equiv 1 \quad(\bmod 3) .
$$

Since $n \equiv 2 m_{1}+4 m_{2}=10 \equiv 1(\bmod 3)$, this implies $n=3 k+4$, and we therefore get $s=k$ and $\sum \alpha_{i}=m_{1}+2 m_{2}-3=2$ from (15). Thus, $a=\left(3^{k-1} 7\right)$ or ($3^{k-2} 55$). Since $c=(k+1, k+1, k+2)$, we also have $k \equiv 0(\bmod 3)$ by the assumption that $m_{1}=2$ and $m_{2}=2$.

$$
\text { No.6: } m=3, k \equiv 0(\bmod 3), a=\left(3^{k-1} 7\right) \text { or }\left(3^{k-2} 55\right), c=(k+1, k+1, k+2) .
$$

Case 2.4.2 $m_{2}=3$.
By (9), we have $\sum \alpha_{i} \leq 3$, and by (12), we have $n \leq 3 k+6$. Thus it follows that $c_{1}=c_{2}=c_{3}=k+1$, or $c_{1}=c_{2}=c_{3}=k+2$, or $\left\{c_{1}, c_{2}, c_{3}\right\}=\{k+1, k+1, k+4\}$.
Case 2.4.2.1 $c_{1}=c_{2}=c_{3}=k+1$.
Since $n=3 k+3=3 s+2 \sum \alpha_{i} \leq 3 s+6$, we have $k-1 \leq s \leq k$. If $s=k$, then
$n=3 k+2 \sum \alpha_{i} \equiv k(\bmod 2)$, which contradicts $n=3 k+3 \equiv k+1(\bmod 2)$. Thus, we may assume that $s=k-1$. Therefore $a=\left(3^{k-3} 552\right)$ or $\left(3^{k-2} 54\right)$ or $\left(3^{k-2} 72\right)$ or $\left(3^{k-1} 6\right)$.

> No.7: $m=3, k \equiv 0(\bmod 3), a=\left(3^{k-3} 552\right)$ or $\left(3^{k-2} 54\right)$ or $\left(3^{k-2} 72\right)$ or $\left(3^{k-1} 6\right)$, $c=(k+1, k+1, k+1)$.

Case 2.4.2.2 $c_{1}=c_{2}=c_{3}=k+2$.
Since $n=3 k+6=3 s+2 \sum \alpha_{i} \leq 3 s+6$, we have $s=k$. Thus, $a=\left(3^{k-3} 555\right)$ or $\left(3^{k-2} 57\right)$ or $\left(3^{k-1} 9\right)$.

$$
\begin{aligned}
& \text { No.8: } m=3, k \equiv 2(\bmod 3), a=\left(3^{k-3} 555\right) \text { or }\left(3^{k-2} 57\right) \text { or }\left(3^{k-1} 9\right), \\
& c=(k+2, k+2, k+2) .
\end{aligned}
$$

Case 2.4.2.3 $\left\{c_{1}, c_{2}, c_{3}\right\}=\{k+1, k+1, k+4\}$.
Since $n=3 k+6=3 s+2 \sum \alpha_{i} \leq 3 s+6$, we have $s=k$. Thus, $a=\left(3^{k-3} 555\right)$ or $\left(3^{k-2} 57\right)$ or ($\left.3^{k-1} 9\right)$.

$$
\begin{aligned}
& \text { No.9: } m=3, k \equiv 0(\bmod 3), a=\left(3^{k-3} 555\right) \text { or }\left(3^{k-2} 57\right) \text { or }\left(3^{k-1} 9\right), \\
& c=(k+1, k+1, k+4) .
\end{aligned}
$$

Case $2.5 m=4$.
By (12), we have

$$
\begin{equation*}
4(k+1) \leq n \leq 3 k+10, \tag{16}
\end{equation*}
$$

and so $k \leq 6$.
Case 2.5.1 $k=6$.
By (16), we have $n=7 \times 4$, and $c=(7777),(p, s)=(4,6)$.

$$
\text { No.12: } m=4, k=6, a=(\text { odd, odd, odd, odd, odd, odd), } c=(7777) .
$$

Case 2.5.2 $k=5$.
By (10) and (12), we have $24 \leq n \leq 3 k+2\left(m_{1}+2 m_{2}-3\right)$, which implies

$$
\begin{equation*}
\left(m_{1}, m_{2}\right)=(0,4) . \tag{17}
\end{equation*}
$$

By (12), we have $24 \leq n \leq 25$, and $c=(6666)$ or (6667), but neither of these two parameters satisfies (17).
Case 2.5.3 $k=4$.
By (10) and (12), we have $20 \leq n \leq 3 k+2\left(m_{1}+2 m_{2}-3\right)$, which implies

$$
\begin{equation*}
\left(m_{1}, m_{2}\right)=(1,3) \text { or }(0,4) . \tag{18}
\end{equation*}
$$

By (12), we have $20 \leq n \leq 22$, and $c=$ (5555), (5556), (5557), or (5566), but none of these parameters satisfy (18).
Case $2.6 m \geq 5$.
By (13), we have

$$
\begin{equation*}
5 \leq m \leq \frac{n}{k+1} \leq \frac{3(k-2)}{k-3}, \tag{19}
\end{equation*}
$$

and so $k \leq 4$. If $m \geq 7$ then (19) implies $k \leq 3$. Thus, only possible cases are (m, k) $=$ $(5,4)$ or $(6,4)$.

Case 2.6.1 $(m, k)=(5,4)$.
By (12), we have $25 \leq n \leq 26$. Thus $c=$ (55555) or (55556), but neither of these two parameters satisfies $p+2 \leq s \leq k=4$.
Case 2.6.2 $(m, k)=(6,4)$.
By (12), we have $n=30$. Thus $c=$ (555555), which contradicts $p+2 \leq s \leq k=4$.
The same argument we used in the proof of Theorem 9 using Lemma 7 is also valid for the proof of Theorem 5 using Lemma 4.

Proof of Theorem 2 Let v_{1}, \ldots, v_{k} be given k vertices. We may assume $a_{1} \leq \cdots \leq a_{k}$. We apply induction on k. The induction is trivially true at $k=1$. Suppose that $a_{1} \leq 3$. In this case we choose a path P satisfying that $|V(P)|=a_{1}$ and v_{1} is an endpoint of P (and $v_{i} \notin A_{1}$ for $i \neq 1$). Since $\delta(G-V(P)) \geq 3 k-3=3(k-1)$, we can apply induction.

Next suppose that $a_{1} \geq 4$. Choose k independent edges $v_{1} w_{1}, \ldots, v_{k} w_{k}$ in G. Delete these $2 k$ vertices. The remaining graph G^{\prime} has minimum degree at least k. If G^{\prime} is connected, we can apply Theorem 1 to G^{\prime} and the partition $n-2 k=\sum_{i=1}^{k}\left(a_{i}-2\right)$.

Let C_{1}, \ldots, C_{m} be connected components of G^{\prime}. We may suppose that $m \geq 2$. Let $V:=\left\{v_{1}, \ldots, v_{k}\right\}, W:=\left\{w_{1}, \ldots, w_{k}\right\}$, and $c_{j}:=\left|C_{j}\right|$ for $1 \leq j \leq m$. Suppose that $c_{1} \geq c_{2} \geq \cdots \geq c_{m}$. We choose W so that (c_{1}, \ldots, c_{m}) is maximal with respect to the lexicographic order. This order is defined by setting $\left(c_{1}, \ldots, c_{m}\right)>\left(d_{1}, \ldots, d_{l}\right)\left(c_{1} \geq \cdots \geq\right.$ $\left.c_{m}, d_{1} \geq \cdots \geq d_{l}\right)$ if there exists i such that $c_{j}=d_{j}$ for all $1 \leq j<i$ and $c_{i}>d_{i}$. We define lex $(G-W):=\left(c_{1}, \ldots, c_{m}\right)$.

Let $s \leq t$ (i.e., $c_{s} \geq c_{t}$). Choose $x \in C_{s}$ and $y \in C_{t}$.
Lemma 12 If $x w_{i} \in E(G)$ then $y v_{i} \notin E(G)$.
Proof Suppose, on the contrary, $y v_{i} \in E(G)$. Define $w_{i}^{\prime}:=y$ and $W^{\prime}:=W-\left\{w_{i}\right\} \cup\left\{w_{i}^{\prime}\right\}$. Then $\operatorname{lex}(G-W)<\operatorname{lex}\left(G-W^{\prime}\right)$, which contradicts our assumption.

Lemma $13|N(x) \cap W|+|N(y) \cap V| \leq k$ holds for every $x \in C_{s}$ and $y \in C_{t}$.
Proof Suppose, on the contrary, that $|N(x) \cap W|+|N(y) \cap V|>k$. Then by the pigeonhole principle, there exists i such that $x w_{i}, y v_{i} \in E(G)$. This contradicts Lemma 12.

Lemma $14 c_{s}+c_{t} \geq 3 k+2$.
Proof Since

$$
3 k \leq d(x) \leq|N(x) \cap V|+|N(x) \cap W|+\left(c_{s}-1\right),
$$

we have $2 k \leq|N(x) \cap W|+\left(c_{s}-1\right)$. In the same way, one has $2 k \leq|N(y) \cap V|+\left(c_{t}-1\right)$. Using the above two inequalities and Lemma 13 , we have $4 k \leq k+\left(c_{s}-1\right)+\left(c_{t}-1\right)$, i.e., $c_{s}+c_{t} \geq 3 k+2$.

We continue the proof of Theorem 2. Let $n^{\prime}:=n-2 k$ and $a_{i}^{\prime}:=a_{i}-2$ for $1 \leq i \leq k$. We apply Theorem 5 to G^{\prime} and $n^{\prime}=\sum a_{i}^{\prime}$. This way we can get an appropriate decomposition except in the case of exceptional parameters. Note that we assume $c_{s}+c_{t} \geq 3 k+2$ for all $s \neq t$. (Thus, we must have $2 n=\left(c_{1}+c_{2}\right)+\left(c_{2}+c_{3}\right)+\cdots+\left(c_{m}+c_{1}\right) \geq m(3 k+2)$.) Therefore it is sufficient to consider the following exceptional cases: No. 1, 2, 14, 16.

If $c_{s}+c_{t} \geq 4 k+2$, then these exceptions can not occur. So we may assume that $c_{s}+c_{t} \leq 4 k+1$. Under this assumption, we have

$$
6 k \leq d(x)+d(y) \leq|N(x) \cap(V \cup W)|+|N(y) \cap(V \cup W)|+\left(c_{s}-1\right)+\left(c_{t}-1\right),
$$

that is,

$$
2 k+1 \leq|N(x) \cap(V \cup W)|+|N(y) \cap(V \cup W)|
$$

By the pigeonhole principle, there exists i such that

$$
\left|N(x) \cap\left\{v_{i}, w_{i}\right\}\right|+\left|N(y) \cap\left\{v_{i}, w_{i}\right\}\right| \geq 3
$$

Using Lemma 12 , we may assume that $x v_{i}, y w_{i} \in E(G)$.
Recall that we are considering the exceptional cases No. 1, 2, 14, 16. If $C_{s}-\{x\}$ is connected, then we can escape from these cases by setting $w_{i}^{\prime}:=x, c_{s}^{\prime}:=c_{s}-1$, and $c_{t}^{\prime}:=c_{t}+1$. So we may assume that $C_{s}-\{x\}$ is disconnected. Let D_{1}, D_{2} be connected components of $C_{s}-\{x\}$. Choose $z_{1} \in D_{1}, z_{2} \in D_{2}$. Then we have

$$
\begin{aligned}
d\left(z_{1}\right) & \leq\left|N\left(z_{1}\right) \cap V\right|+\left|N\left(z_{1}\right) \cap W\right|+\left|\{x\} \cup D_{1}-\left\{z_{1}\right\}\right| \\
& \leq\left|N\left(z_{1}\right) \cap W\right|+\left|D_{1}\right|+k \\
d(y) & \leq|N(y) \cap V|+k+\left(c_{t}-1\right) .
\end{aligned}
$$

Using Lemma 13, the above inequalities imply

$$
6 k \leq d\left(z_{1}\right)+d(y) \leq 3 k+\left|D_{1}\right|+c_{t}-1
$$

that is $3 k \leq\left|D_{1}\right|+c_{t}-1$. In the same way, we have $3 k \leq\left|D_{2}\right|+c_{t}-1$. Consequently, we have

$$
\begin{aligned}
6 k & \leq\left|D_{1}\right|+\left|D_{2}\right|+2 c_{t}-2 \\
& \leq c_{s}+2 c_{t}-3 \\
& \leq 4 k-2+c_{t}
\end{aligned}
$$

This implies $c_{t} \geq 2 k+2$, which contradicts our earlier assumption $c_{s} \geq c_{t}$ and $c_{s}+c_{t} \leq$ $4 k+1$.
This completes the proof of Theorem 2.

4 Open problem

Theorem 2 requires the condition $\delta(G) \geq 3 k$. Is this condition sharp? The following example shows that one can not replace this condition by $\delta(G) \geq 3 k-3$.

Example 15 Let $G:=K_{3 k-2} \cup K_{3 k-2}$, i.e., the disjoint union of two complete graphs of order $3 k-2$. Choose v_{1}, \ldots, v_{k} in the same connected component. Let $a_{1}=\cdots=a_{k-1}=3$, $a_{k}=3 k-1$. Then any decomposition $V(G)=\bigcup A_{i}$ with $\left|A_{i}\right|=a_{i}, v_{i} \in A_{i}$ contains some j such that $\delta\left(<A_{j}>\right)=0$.

Problem 16 Does Theorem 2 hold under the assumption $\delta(G) \geq 3 k-2$?

References

[1] H. Enomoto. Graph decompositions without isolated vertices. J. Comb. Th. B, 27 (1979) 111-124.
[2] A. Frank. The 5th British Combinatorial Conference in Aberdeen (Scotland) 1975.
[3] E. Györi. On division of graphs to connected subgraphs. Colloq. Math. Soc. János Bolyai, 18 (1978) 485-494.
[4] L. Lovász. A homology theory for spanning trees of a graph. Acta. Math. Acad. Sci. Hungar., 30 (1977) 241-251.
[5] S. B. Maurer, The 5th British Combinatorial Conference in Aberdeen (Scotland) 1975.
[6] S. B. Maurer, Vertex colorings without isolates. J. Comb. Th. B, 27 (1979) 294-319.

