THE MAXIMUM SIZE OF 4-WISE 2-INTERSECTING AND 4-WISE 2-UNION FAMILIES

NORIHIDE TOKUSHIGE

ABSTRACT. Let \mathscr{F} be an *n*-uniform hypergraph on 2n vertices. Suppose that $|F_1 \cap F_2 \cap F_3 \cap F_4| \ge 2$ and $|F_1 \cup F_2 \cup F_3 \cup F_4| \le n-2$ holds for all $F_1, F_2, F_3, F_4 \in \mathscr{F}$. We prove that the size of \mathscr{F} is at most $\binom{2n-4}{n-2}$ for *n* sufficiently large.

1. INTRODUCTION

A family $\mathscr{F} \subset 2^X$ is called *r*-wise *t*-intersecting if $|F_1 \cap \cdots \cap F_r| \ge t$ holds for all $F_1, \ldots, F_r \in \mathscr{F}$. A family $\mathscr{F} \subset 2^X$ is called *r*-wise *t*-union if $|F_1 \cup \cdots \cup$ $F_r| \le |X| - t$ holds for all $F_1, \ldots, F_r \in \mathscr{F}$. The Erdős–Ko–Rado theorem[2] states that if $n \ge 2k$ and $\mathscr{F} \subset {n \choose k}$ is 2-wise 1-intersecting then $|\mathscr{F}| \le {n-1 \choose k-1}$. By considering the complement, the theorem can be restated as follows: if $n \le 2k$ and $\mathscr{F} \subset {n \choose k}$ is 2-wise 1-union then $|\mathscr{F}| \le {n-1 \choose k}$. Now what is the maximum size of a family $\mathscr{F} \subset {n \choose k}$ that is *r*-wise 1-intersecting and at the same time *q*-wise 1-union? The case r = q = 2 is quite easy. In fact, it follows from the Erdős–Ko–Rado theorem that

$$|\mathscr{F}| \le \begin{cases} \binom{n-1}{k} & \text{if } n < 2k \\ \binom{n-1}{k} = \binom{n-1}{k-1} & \text{if } n = 2k \\ \binom{n-1}{k-1} & \text{if } n > 2k. \end{cases}$$

But the case $r \ge 3$ or $q \ge 3$ is not so easy and we do not know the complete answer yet. The first result in this direction was obtained by Gronau[7] who solved the case $r \ge 6$ and $q \ge 6$ completely. Then Engel and Gronau[1] settled the case $r \ge 4$ and $q \ge 4$ as follows.

Theorem 1. Let $r \ge 4$, $q \ge 4$ and $\mathscr{F} \subset {\binom{[n]}{k}}$. Suppose that \mathscr{F} is r-wise 1-intersecting and q-wise 1-union, and

$$\frac{n-1}{q}+1\leq k\leq \frac{r-1}{r}(n-1).$$

Then we have $|\mathscr{F}| \leq \binom{n-2}{k-1}$.

The case r = 3 or q = 3 is more difficult and still open. As a special case the following was proved in [6].

Theorem 2. Let $\mathscr{F} \subset {\binom{[2n]}{n}}$ be a 3-wise 1-intersecting and 3-wise 1-union family. Then we have $|\mathscr{F}| \leq {\binom{2n-2}{n-1}}$. Equality holds iff $\mathscr{F} \cong \{F \in {\binom{[2n-1]}{n}}: 1 \in F\}$.

In this note we consider the 4-wise 2-intersecting and 4-wise 2-union case, and our main result is the following.

Theorem 3. Let $\mathscr{F} \subset {\binom{[2n]}{n}}$ be a 4-wise 2-intersecting and 4-wise 2-union family with *n* sufficiently large. Then we have $|\mathscr{F}| \leq {\binom{2n-4}{n-2}}$. Equality holds iff $\mathscr{F} \cong \{F \in {\binom{[2n-2]}{n}} : [2] \subset F\}.$

It is most likely that the same conclusion holds for the 3-wise 2-intersecting and 3-wise 2-union case, but it seems to be much harder to prove.

We use the random walk method originated from [4] by Frankl. For $A \in {[n] \choose k}$ we define the corresponding walk on \mathbb{Z}^2 , denoted by walk(A), in the following way. The walk is from (0,0) to (n-k,k) with n steps, and if $i \in A$ (resp. $i \notin A$) then we move one unit up (resp. one unit to the right) at the *i*-th step. Among ${n \choose k}$ walks corresponding to ${[n] \choose k}$, how many of them touch a given line? The next result gives an upper bound of this number, which is one of the main tools to prove Theorem 3.

Theorem 4. Let $p \in \mathbb{Q}$, $r,t \in \mathbb{N}$ be fixed constants with $r \ge 2$ and $p < \frac{r-1}{r+1}$, and let *n* and *k* be positive integers with $p = \frac{k}{n}$. Let $\alpha \in (p, 1)$ be the unique root of the equation $(1-p)x^r - x + p = 0$ and let f(n) be the number of walks from (0,0) to (n-k,k) which touch the line L : y = (r-1)x + t. Then we have

$$f(n) \le \alpha^t \binom{n}{k}$$

for n sufficiently large.

If $p = \frac{k}{n} > \frac{r-1}{r}$ then all walks touch the line, i.e., $f(n) = \binom{n}{k}$. The author conjectures that the conclusion of Theorem 4 still holds for $p < \frac{r-1}{r}$.

2. Tools

In this section we summarize some tools for the proof of Theorem 3. For integers $1 \le i < j \le n$ and a family $\mathscr{F} \subset 2^{[n]}$, define the (i, j)-shift S_{ij} as follows.

$$S_{ij}(\mathscr{F}) := \{S_{ij}(F) : F \in \mathscr{F}\},\$$

where

$$S_{ij}(F) := \begin{cases} (F - \{j\}) \cup \{i\} & \text{if } i \notin F, \ j \in F, \ (F - \{j\}) \cup \{i\} \notin \mathscr{F}, \\ F & \text{otherwise.} \end{cases}$$

A family $\mathscr{F} \subset 2^{[n]}$ is called shifted if $S_{ij}(\mathscr{F}) = \mathscr{F}$ for all $1 \leq i < j \leq n$. For a given family \mathscr{F} , one can always obtain a shifted family \mathscr{F}' from \mathscr{F} by applying shifting to \mathscr{F} repeatedly. Then we have $|\mathscr{F}'| = |\mathscr{F}|$ because shifting keeps the size of the family. It is easy to check that if \mathscr{F} is *r*-wise *t*-intersecting (resp. *q*-wise *s*-union) then $S_{ij}(\mathscr{F})$ is also *r*-wise *t*-intersecting (resp. *q*-wise *s*-union). Therefore if \mathscr{F} is an *r*-wise *t*-intersecting and *q*-wise *s*-union family then we can find a shifted family \mathscr{F}' which is *r*-wise *t*-intersecting and *q*-wise *s*-union and $|\mathscr{F}'| = |\mathscr{F}|$.

Next we explain how to connect Theorem 4 to bound the size of *r*-wise *t*-intersecting families. Let us begin with a toy example. Suppose that $\mathscr{F} \subset \binom{[14]}{7}$ is a shifted 4-wise 2-intersecting family. We are going to show that $F_0 := \{1, 3, 4, 5, 7, 8, 9\} \notin \mathscr{F}$. Suppose on the contrary that $F_0 \in \mathscr{F}$. Then by shifting F_0 , we obtain $F_1, F_2, F_3 \in \mathscr{F}$:

$$\begin{split} F_0 &:= \{1, *, 3, 4, 5, *, 7, 8, 9\}, \\ F_1 &:= \{1, 2, *, 4, 5, 6, *, 8, 9\}, \\ F_2 &:= \{1, 2, 3, *, 5, 6, 7, *, 9\}, \\ F_3 &:= \{1, 2, 3, 4, *, 6, 7, 8, *\}, \end{split}$$

where "*" means visible blank space. But this is impossible because $F_0 \cap F_1 \cap F_2 \cap F_3 = \{1\}$, which contradicts the 4-wise 2-intersecting property. This proves that $F_0 \notin \mathscr{F}$. The following picture shows walk(F_0).

Note that walk(F_0) is the "maximal" walk which does not touch the line L: y = 3x + 2. In other words, if walk(G), $G \in \binom{[14]}{7}$, does not touch L then we can obtain F_0 from G by shifting (a sequence of shiftings). Since \mathscr{F} is shifted we have $G \notin \mathscr{F}$. Equivalently, if $F \in \mathscr{F}$ then walk(F) must touch L. For the general case, i.e., a shifted r-wise t-intersecting family $\mathscr{F} \subset \binom{[n]}{k}$, we consider the line y = (r-1)x + t and F_0, F_1, \ldots, F_r , where F_i consists of the first k elements of $[n] - \{t + i, t + r + i, t + 2r + i, \ldots\}$. Then we have the following.

Fact 5 ([4]). Let $\mathscr{F} \subset {\binom{[n]}{k}}$ be a shifted *r*-wise *t*-intersecting family. Then for all $F \in \mathscr{F}$, walk(*F*) must touch the line $L_1 : y = (r-1)x + t$.

Fact 5 and Theorem 4 gives $|\mathscr{F}| \leq \alpha^t {n \choose k}$ if $\frac{k}{n} < \frac{r-1}{r+1}$ and *n* is sufficiently large.

If $\mathscr{F} \subset {[n] \choose k}$ is a shifted *q*-wise *s*-union family then the complement family $\mathscr{F}^c = \{[n] - F : F \in \mathscr{F}\} \subset {[n] \choose n-k}$ is a shifted (in the reverse direction) *q*-wise *s*-intersecting family. Changing the coordinate system by x' = k - y and y' = (n-k) - x, one obtains from Fact 5 that walks corresponding to \mathscr{F}^c touch the line y' = (q-1)x' + s. Namely we have the following.

Fact 6. Let $\mathscr{F} \subset {\binom{[n]}{k}}$ be a shifted *q*-wise *s*-union family. Then for all $F \in \mathscr{F}$, walk(*F*) must touch the line $L_2 : y = \frac{1}{q-1}(x-n+k+s)+k$.

If $\mathscr{F} \subset {\binom{[2n]}{n}}$ is a shifted *r*-wise *t*-intersecting and *q*-wise *s*-union family then the corresponding walks of the family touch the both lines of L_1 and L_2 . In this situation, we can use the following result which is deduced from Theorem 4 by setting $p = \frac{1}{2}$.

Corollary 7. Let $q, r, s, t \in \mathbb{N}$ be fixed constants with $q \ge 4$ and $r \ge 4$. Let $\alpha_j \in (\frac{1}{2}, 1)$ be the unique root of the equation $\frac{1}{2}x^j - x + \frac{1}{2} = 0$. Let h(n) be the number of walks from (0,0) to (n,n) which touch both of the lines $L_1 : y = (r-1)x + t$ and $L_2 : y = \frac{1}{q-1}(x-n+s) + n$. Then for any $\varepsilon > 0$ there exists n_0 such that

$$\frac{h(n)}{\binom{2n}{n}} \leq (1+\varepsilon)\alpha_r^t \alpha_q^s$$

holds for all $n > n_0$.

4

One can not remove ε from the above inequality. (Numerical experiments suggest that $h(n)/\binom{2n}{n} \ge \alpha_r^t \alpha_q^s$ always holds.) In our application, we also need a slight modification of Theorem 4 and Corollary 7 stated below.

Corollary 8. Let $p \in \mathbb{Q}$, $r, t, u, v \in \mathbb{N}$ be fixed constants with $r \ge 2$ and $p < \frac{r-1}{r+1}$, and let n and k be positive integers with $p = \frac{k}{n}$. Let $\alpha \in (p, 1)$ be the unique root of the equation $(1-p)x^r - x + p = 0$ and let g(n) be the number of walks from (0,0) to (n-k-u,k-v) which touch the line y = (r-1)x+t. Then for any $\varepsilon > 0$ there exists n_0 such that

$$\frac{g(n)}{\binom{n-u-\nu}{k-\nu}} \leq (1+\varepsilon)\alpha^t$$

holds for all $n > n_0$. Moreover if u = 0 then we can choose $\varepsilon = 0$.

Corollary 9. Let $q, r, s, t, u, v \in \mathbb{N}$ be fixed constants with $q \ge 4$, $r \ge 4$ and t + (r-1)u - v > 0. Let $\alpha_j \in (\frac{1}{2}, 1)$ be the unique root of the equation $\frac{1}{2}x^j - x + \frac{1}{2} = 0$. Let m(n) be the number of walks from (u, v) to (n, n) which touch both of the lines $L_1 : y = (r-1)x + t$ and $L_2 : y = \frac{1}{q-1}(x - n + s) + n$. Then for any $\varepsilon > 0$ there exists n_0 such that

$$\frac{m(n)}{\binom{2n-u-v}{n-v}} \leq (1+\varepsilon)\alpha_r^{t+(r-1)u-v}\alpha_q^s$$

holds for all $n > n_0$.

Finally we list the following Erdős–Ko–Rado type results for multiply intersecting families which we will use to prove Theorem 3.

Theorem 10. [3] If $\mathscr{F} \subset {\binom{[n]}{k}}$ is *r*-wise 1-intersecting and $(r-1)n \ge rk$ then $|\mathscr{F}| \le {\binom{n-1}{k-1}}$. If $r \ge 3$ then equality holds iff $\mathscr{F} \cong \{F \in {\binom{[n]}{k}} : 1 \in F\}$.

The equivalent complement version is the following: If $\mathscr{F} \subset {[n] \choose k}$ is *r*-wise 1-union and $rk \ge n$ then $|\mathscr{F}| \le {n-1 \choose k}$.

Theorem 11. [5] Let $\mathscr{F} \subset {\binom{[n]}{k}}$ be a 3-wise 2-intersecting family with $k/n \leq 0.501$, *n* sufficiently large. Then we have $|\mathscr{F}| \leq {\binom{n-2}{k-2}}$, and equality holds iff $\mathscr{F} \cong \{F \in {\binom{[2n]}{n}} : [2] \subset F\}.$

3. PROOF OF THEOREM 4

Let $I := \{0, 1, \dots, \lfloor \frac{k-t}{r-1} \rfloor\}$ and for $i \in I$ let a_i be the number of walks of length ri + t from (0,0) to (i, (r-1)i + t) which touch the line *L* only at (i, (r-1)i+t). Then we have

$$f(n) = \sum_{i \in I} a_i \binom{n - ri - t}{k - (r - 1)i - t}.$$
 (1)

We also use the following fact (cf. (7) and Fact 3 in [8]):

$$\sum_{i \in I} a_i p^{(r-1)i+t} (1-p)^i \le \sum_{i=0}^{\infty} a_i p^{(r-1)i+t} (1-p)^i = \alpha^t.$$
(2)

Comparing (1) and (2) it suffices to show that

$$\binom{n-ri-t}{k-(r-1)i-t} / \binom{n}{k} \le p^{(r-1)i+t} (1-p)^i \tag{3}$$

holds for all $i \in I$.

Claim 12. Let $S(t) := {\binom{n-ri-t}{k-(r-1)i-t}}/p^t$. Then S(t) is a decreasing function of t.

Proof. Since $S(t+1) = {\binom{n-ri-t-1}{k-(r-1)i-t-1}}/{p^{t+1}} = S(t)\frac{k-(r-1)i-t}{p(n-ri-t)}$, it suffices to show

$$1 > \frac{k - (r - 1)i - t}{p(n - ri - t)} = \frac{n(k - (r - 1)i - t)}{k(n - ri - t)},$$

or equivalently,

$$\frac{(r-1)i+t}{ri+t} > \frac{k}{n}$$

This is certainly true because

$$\frac{(r-1)i+t}{ri+t} > \frac{r-1}{r} > \frac{r-1}{r+1} > \frac{k}{n}. \quad \Box$$

Due to the claim, it suffices to show (3) for t = 1, that is,

$$\binom{n-ri-1}{k-(r-1)i-1} / \binom{n}{k} \le p^{(r-1)i+1}(1-p)^i \text{ for } i \in I.$$

The LHS of the above inequality is rewritten as $p \prod_{j=0}^{i-1} T(j)$ where

$$T(j):=\frac{n-k-j}{n-rj-1}\prod_{\ell=2}^r\frac{k-(r-1)j-\ell+1}{n-rj-\ell}$$

Thus we have to show

$$\prod_{j=0}^{i-1} T(j) \le (p^{r-1}(1-p))^i.$$
(4)

Claim 13. We have T(j) > T(j+1) for $0 \le j \le i-2$.

Proof. Comparing

$$T(j) = \frac{n-k-j}{n-rj-1} \prod_{\ell=2}^{r} \frac{k-(r-1)j-\ell+1}{n-rj-\ell} = \frac{n-k-j}{n-rj-r} \prod_{\ell=2}^{r} \frac{k-(r-1)j-\ell+1}{n-rj-\ell+1}$$

and

$$T(j+1) = \frac{n-k-(j+1)}{n-r(j+1)-1} \prod_{\ell=2}^{r} \frac{k-(r-1)(j+1)-\ell+1}{n-r(j+1)-\ell},$$

it suffices to show the following inequalities:

$$\frac{n-k-j}{n-rj-r} > \frac{n-k-(j+1)}{n-r(j+1)-1}$$
(5)

and, for $2 \le \ell \le r$,

$$\frac{k - (r-1)j - \ell + 1}{n - rj - \ell + 1} > \frac{k - (r-1)(j+1) - \ell + 1}{n - r(j+1) - \ell}.$$
(6)

The inequality (5) is equivalent to $j < \frac{k-1}{r-1} - 1$, which follows from our assumption $j \le i-2 \le \lfloor \frac{k-1}{r-1} \rfloor - 2$. Since k = pn, inequality (6) is equivalent to

$$(r-1-p(r+1))n+(r-1)j+2(\ell-1)>0.$$

Since $p < \frac{r-1}{r+1}$, the coefficient of *n* in the LHS is positive and so the above inequality clearly holds.

By the claim we have $\prod_{j=0}^{i-1} T(j) \le T(0)^i$. Thus to prove (4) it suffices to show $T(0) \le p^{r-1}(1-p)$ or equivalently,

$$p^{r-1}(1-p)(n-1)\cdots(n-r)-(pn-1)\cdots(pn-r+1)(n-pn) \ge 0.$$

The LHS can be rewritten as

$$\frac{1}{2}rp^{r-2}(1-p)(r-1-(r+1)p)n^{r-1}+O(n^{r-2}).$$

Since $p < \frac{r-1}{r+1}$, the coefficient of n^{r-1} is positive and we are done.

Let $\varepsilon > 0$ be given. We choose $\delta_1, \delta_2 > 0$ so that

$$\delta_1 < (\varepsilon/2) \alpha_r^t \alpha_q^s, \tag{7}$$

$$(1+\delta_2)^2 < 1+(\epsilon/2).$$
 (8)

Let $K_n := \{k \in \mathbb{N} : |k - \frac{n}{2}| \le c\sqrt{n}\}$ where we choose c > 0 so that

$$\lim_{n \to \infty} \sum_{k \in K_n} \frac{\binom{n}{k}^2}{\binom{2n}{n}} = \frac{2}{\sqrt{\pi}} \int_{-c}^{c} \exp(-4x^2) dx > 1 - \frac{\delta_1}{2}$$

(The first equality follows from the de Moivre–Laplace limit Theorem. In fact one has $\binom{n}{k}^2 / \binom{2n}{n} = \frac{2}{\sqrt{\pi n}} \exp(-4x^2 + o(1))$ by setting $x = (k - \frac{n}{2})/\sqrt{n}$.) Then we can choose $n_1 \in \mathbb{N}$ so that

$$\sum_{k \notin K_n} \frac{\binom{n}{k}^2}{\binom{2n}{n}} < \delta_1 \tag{9}$$

holds for all $n > n_1$.

For $0 let <math>\alpha_j(p) \in (p, 1)$ be the unique root of the equation $(1 - p)x^j - x + p = 0$. Then $\alpha_j(p)$ is a continuous function of p at p = 1/2, and $\alpha_j(1/2) = \alpha_j$. Therefore we can choose $\delta_3 > 0$ so that

$$\alpha_r(p)^t < (1+\delta_2)\alpha_r^t, \quad \alpha_q(p)^s < (1+\delta_2)\alpha_q^s \tag{10}$$

holds for all p with $|p - \frac{1}{2}| < \delta_3$. Choose $n_2 \in \mathbb{N}$ so that $\frac{c}{\sqrt{n_2}} < \delta_3$, and let $n_0 := \max\{n_1, n_2\}$. Finally we choose n sufficiently large, i.e., $n > n_0$.

Now we consider a walk from (0,0) to (n,n). After n/2 steps this walk arrives at the line x + y = n. Roughly speaking, a typical walk arrives at a point near the center $(\frac{n}{2}, \frac{n}{2})$. More precisely we are interested in the walks which go through the center zone $\{(n - k, k) : k \in K_n\}$ and touch the lines L_1 and L_2 both. We will estimate the number of those walks by using Theorem 4. The number of walks outside the center zone is so small that we do not need a serious estimation for this type of walks.

Let $k \in K_n$ and p = k/n. Then we have $|p - \frac{1}{2}| < \delta_3$, which guarantees (10). Also, since $r \ge 4$ and δ_3 is small we may assume that $p < \frac{1}{2} + \delta_3 < \frac{r-1}{r+1}$. Thus by Theorem 4 and (10) the number of walks from (0,0) to (n-k,k) which touch the line L_1 is at most $\alpha_r(p)^t {n \choose k} < (1+\delta_2)\alpha_r^t {n \choose k}$.

Next we consider the walks from (n - k, k) to (n, n) which touch the line L_2 . Changing the coordinate system by x' = n - y and y' = n - x, we find that the number of these walks is equal to the number of walks from (0,0) to (k, n - k) which touch the line y' = (q - 1)x' + s, and this number is at most $(1 + \delta_2)\alpha_q^s\binom{n}{k}$ if $k \in K_n$.

Therefore we have

$$h(n) \leq \sum_{k \in K_n} (1 + \delta_2) \alpha_r^t \binom{n}{k} (1 + \delta_2) \alpha_q^s \binom{n}{k} + \sum_{k \notin K_n} \binom{n}{k}^2.$$
(11)

Dividing the both sides by $\binom{2n}{n}$, and using $\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$ and (9), we have

$$h(n)/\binom{2n}{n} < (1+\delta_2)^2 \alpha_r^t \alpha_q^s + \delta_1.$$

By (7) and (8) the RHS is less than $(1 + \varepsilon)\alpha_r^t \alpha_a^s$.

5. PROOF OF COROLLARY 8

Let $\varepsilon > 0$ be given. Let $\alpha(w) \in (w, 1)$ be the unique root of the equation $(1 - w)x^r - x + w = 0$. Choose *n* and *k* with $p = \frac{k}{n}$ and set n' := n - u - v, k' := k - v and $p' := \frac{k'}{n'}$. Then by Theorem 4 we have

$$f(n')/\binom{n'}{k'} \leq \alpha(p')^t.$$

We also have $p' \to p$ as $n \to \infty$. Since $\alpha(w)$ is a continuous function it follows that $\alpha(p') \to \alpha(p) = \alpha$ as $n \to \infty$. Thus we can choose n_0 such that $\alpha(p')^t < (1 + \varepsilon)\alpha^t$ holds for all $n > n_0$. Then we have

$$\frac{g(n)}{\binom{n-u-\nu}{k-\nu}} = \frac{f(n')}{\binom{n'}{k'}} \le \alpha(p')^t < (1+\varepsilon)\alpha^t.$$

Moreover if u = 0 then we have $p' = \frac{k-v}{n-v} < \frac{k}{n} = p$. Since $\alpha(w)$ is an increasing function, we have $\alpha(p') < \alpha(p)$ and $\alpha(p')^t < \alpha^t$.

6. PROOF OF COROLLARY 9

The proof is almost identical to the proof of Corollary 7. The only difference is that we consider walks $(u,v) \rightarrow (n-k,k) \rightarrow (n,n)$ in this case instead of $(0,0) \rightarrow (n-k,k) \rightarrow (n,n)$. For the part $(u,v) \rightarrow (n-k,k)$ we apply Corollary 8. To do so, we translate the walks by (-u, -v), in other words, we consider walks from (0,0) to (n-k-u,k-v) with (translated) new line y = (r-1)(x+u) + t - v = (r-1)x + t + (r-1)u - v. (We need t + (r-1)u - v > 0 here.) The number of walks which touch this line is at most $(1 + \varepsilon')\alpha_r(p)^{t+(r-1)u-v} {n-u-v \choose k-v}$. So we have to change the first inequality in (10) by $(1 + \varepsilon')\alpha_r(p)^{t+(r-1)u-v} < (1 + \delta_2)\alpha_r^{t+(r-1)u-v}$. Then inequality (11) is replaced by the following:

$$m(n) \leq \sum_{k \in K_n} (1+\delta_2)^2 \alpha_r^{t+(r-1)u-\nu} \alpha_q^s \binom{n-u-\nu}{k-\nu} \binom{n}{k} + \sum_{k \notin K_n} \binom{n-u-\nu}{k-\nu} \binom{n}{k}.$$

We omit the remaining details which can be checked by routine calculation.

7. Proof of Theorem 3

Let $\mathscr{F} \subset {\binom{[2n]}{n}}$ be a 4-wise 2-intersecting and 4-wise 2-union family. Suppose that \mathscr{F} is not 3-wise 3-union. Then there exist $A, B, C \in \mathscr{F}$ such that $|A \cup B \cup C| = 2n - 2$, say, $A \cup B \cup C = [2n - 2]$. Since \mathscr{F} is 4-wise 2-union, we have $\mathscr{F} \subset {\binom{[2n-2]}{n}}$. On the other hand, \mathscr{F} is 4-wise 2-intersecting (and so 3-wise 2-intersecting). Then by Theorem 11 we have $|\mathscr{F}| \leq {\binom{2n-4}{n-2}}$ and equality holds iff $\mathscr{F} \cong \{F \in {\binom{[2n-2]}{n}} : [2] \subset F\}$. This means that the theorem is true if \mathscr{F} is not 3-wise 3-union. Considering the complement, the theorem is also true if \mathscr{F} is not 3-wise 3-intersecting. Therefore from now on we assume that

 \mathscr{F} is 3-wise 3-intersecting and 3-wise 3-union.

We also assume that \mathscr{F} is shifted. Now suppose that

$$|\mathscr{F}| \ge \binom{2n-4}{n-2} \tag{12}$$

and we shall prove that there is no such \mathcal{F} .

Recall that for $A \in {\binom{[2n]}{n}}$ we define walk(*A*) on \mathbb{Z}^2 in the following way. The walk is from (0,0) to (n,n) with 2n steps, and if $i \in A$ (resp. $i \notin A$) then

we move one unit up (resp. one unit to the right) at the i-th step. Let us define

$$\mathscr{A}_{i} := \{ A \in {\binom{[2n]}{n}} : |A \cap [2+4\ell]| \ge 2+3\ell \text{ first holds at } \ell = i \},$$
$$\mathscr{A}_{\overline{j}} := \{ A \in {\binom{[2n]}{n}} : |A \cap [2n-4\ell-1,2n]| \le \ell \text{ first holds at } \ell = j \}.$$

(Here we say a property $P(\ell)$ first holds at $\ell = i$ if $P(\ell)$ does not hold for $0 \le \ell < i$ but P(i) holds.) If $A \in \mathscr{A}_i$ then, after starting from the origin, walk(A) touches the line $L_1 : y = 3x + 2$ at (i, 3i + 2) for the first time. If $A \in \mathscr{A}_{\bar{j}}$ then walk(A) touches the line $L_2 : y = \frac{1}{3}(x - (n - 2)) + n$ at (n - 3j - 2, n - j) and after passing this point this walk never touches the line again. By Fact 5 and Fact 6 every walk corresponding to a member of \mathscr{F} touches both L_1 and L_2 . Thus we have $\mathscr{F} \subset \bigcup_{i,j} (\mathscr{A}_i \cap \mathscr{A}_{\bar{j}})$. Set $\mathscr{A}_{i\bar{j}} := \mathscr{A}_i \cap \mathscr{A}_{\bar{j}}$,

$$\mathscr{F}_i := \mathscr{A}_i \cap \mathscr{F}, \quad \mathscr{F}_{\overline{j}} := \mathscr{A}_{\overline{j}} \cap \mathscr{F}, \quad \mathscr{F}_{i\overline{j}} := \mathscr{A}_{i\overline{j}} \cap \mathscr{F},$$

and

$$\mathscr{G}_{i\overline{j}} := \{F \cap [4i+3, 2n-4j-2] : F \in \mathscr{F}_{i\overline{j}}\}.$$

Since $\mathscr{F}_{0\bar{0}}$ is 3-wise 3-intersecting, $\mathscr{G}_{0\bar{0}} \subset {[3,2n-2] \choose n-2}$ is 3-wise 1-intersecting, and it follows from Theorem 10 that

$$|\mathscr{F}_{0\bar{0}}| = |\mathscr{G}_{0\bar{0}}| \le \binom{2n-5}{n-3}.$$
(13)

Claim 14. $\mathscr{G}_{1\bar{0}} \subset {\binom{[7,2n-2]}{n-5}}$ is 3-wise 1-intersecting.

Proof. Suppose on the contrary that there exist $A, B, C \in \mathscr{G}_{1\bar{0}}$ such that $A \cap B \cap C = \emptyset$. If $F \in \mathscr{F}_{1\bar{0}}$ then $F \cap [6] = \{1, 3, 4, 5, 6\}$ or $\{2, 3, 4, 5, 6\}$. By the shiftedness we may assume that the following three subsets A', B', C' belong to \mathscr{F} :

$$A' := \{1,3,4,5,6\} \cup A, B' := \{1,2,4,5,6\} \cup B, C' := \{1,2,3,5,6\} \cup C.$$

If there exists $F \in \mathscr{F}$ such that $|F \cap [6]| \le 4$ then using the shiftedness we may assume that $F \cap [6] \subset [4]$. But this is impossible because $A' \cap B' \cap$ $C' \cap F = \{1\}$, contradicting the 4-wise 2-intersecting property. So we may assume that $|F \cap [6]| \ge 5$ holds for all $F \in \mathscr{F}$.

For $S \subset [6]$ let $\mathscr{F}(S) := \{F \in \mathscr{F} : F \cap [6] = S\}$. We consider the case |S| = 5, 6 and the corresponding walks clearly touch the line L_1 in the beginning. If |S| = 5 then the corresponding walks from (1,5) to (n,n) must touch L_2 , or equivalently we have to count the number of walks from (0,0) to (n-5,n-1) which touch L_1 . (Here we change the coordinate system by x' = n - y and y' = n - x.) Then by Corollary 8 (r = 4, t = 2, u = 5, v = 1) we have

$$\sum_{S \in \binom{[6]}{5}} |\mathscr{F}(S)| < 6(1+\varepsilon)\alpha^2 \binom{2n-6}{n-1},$$

where $\alpha \approx 0.543689$ is the root of the equation $x^4 - 2x + 1 = 0$. If S = [6] then the corresponding walk from (0,6) to (n,n) must touch L_2 , and we count the number of walks from (0,0) to (n-6,n) which touch L_1 . Again by Corollary 8 (r = 4, t = 2, u = 6, v = 0) we have

$$|\mathscr{F}([6])| < (1+\varepsilon)\alpha^2 \binom{2n-6}{n}.$$

Consequently, for sufficiently large *n*, we have

$$\frac{|\mathscr{F}|}{\binom{2n-4}{n-2}} < (6\alpha^2 + \alpha^2) \frac{1+\varepsilon'}{4} < 0.52,$$

which contradicts (12).

By Claim 14 and Theorem 10 we have

$$|\mathscr{F}_{1\bar{0}}| \le 2|\mathscr{G}_{1\bar{0}}| \le 2\binom{2n-9}{n-6}.$$
(14)

By considering the complement we also have

$$|\mathscr{F}_{0\bar{1}}| \le 2 \binom{2n-9}{n-6}.$$
(15)

Let \sum_{k} denote the summation over all $i, j \ge 0$ except (i, j) = (0, 0), (1, 0), (0, 1). Then we have

$$|\mathscr{F}| = \sum_{i,j \geq 0} |\mathscr{F}_{i\bar{j}}| = |\mathscr{F}_{0\bar{0}}| + |\mathscr{F}_{1\bar{0}}| + |\mathscr{F}_{0\bar{1}}| + \sum_{*} |\mathscr{F}_{i\bar{j}}|,$$

and

$$\sum_{*} |\mathscr{F}_{i\bar{j}}| \leq \sum_{*} |\mathscr{A}_{i\bar{j}}| \leq \sum_{i,j \geq 0} |\mathscr{A}_{i\bar{j}}| - \{|\mathscr{A}_{0\bar{0}}| + |\mathscr{A}_{1\bar{0}}| + |\mathscr{A}_{0\bar{1}}|\}.$$

Since $|\mathscr{A}_{0\bar{0}}| = \binom{2n-4}{n-2}$ and $|\mathscr{A}_{1\bar{0}}| = |\mathscr{A}_{0\bar{1}}| = 2\binom{2n-8}{n-5}$, Corollary 7 implies that

$$\sum_{*} |\mathscr{A}_{i\bar{j}}| < (1+\varepsilon)\alpha^4 \binom{2n}{n} - \left\{ \binom{2n-4}{n-2} + 4\binom{2n-8}{n-5} \right\}.$$
(16)
using (13) (14) (15) and (16), we have

Finally using (13), (14), (15) and (16), we have

$$\begin{aligned} \mathscr{F}| &\leq |\mathscr{F}_{0\bar{0}}| + |\mathscr{F}_{1\bar{0}}| + |\mathscr{F}_{0\bar{1}}| + \sum_{*} |\mathscr{A}_{i\bar{j}}| \\ &< \binom{2n-5}{n-3} + 4\binom{2n-9}{n-6} + (1+\varepsilon)\alpha^{4}\binom{2n}{n} \\ &- \left\{ \binom{2n-4}{n-2} + 4\binom{2n-8}{n-5} \right\} \\ &< 0.78\binom{2n-4}{n-2}, \end{aligned}$$

for *n* sufficiently large, which contradicts (12). This completes the proof of Theorem 3.

Acknowledgment. The author would like to thank Professor Konrad Engel for telling him the problem and related references. He also would like to thank the referee for valuable comments.

REFERENCES

- K. Engel, H.-D.O.F. Gronau. An Erdős–Ko–Rado type theorem II. Acta Cybernet., 4:405–411, 1986.
- [2] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. *Quart. J. Math. Oxford* (2), 12:313–320, 1961.
- [3] P. Frankl. On Sperner families satisfying an additional condition. *J. Combin. Theory* (*A*), 20:1–11, 1976.
- [4] P. Frankl. Families of finite sets satisfying an intersection condition. Bull. Austral. Math. Soc., 15:73–79 1976.
- [5] P. Frankl, N. Tokushige. Random walks and multiply intersecting families. *J. Combin. Theory* (*A*), 109:121–134, 2005.
- [6] P. Frankl, N. Tokushige. The maximum size of 3-wise intersecting and 3-wise union families, *preprint*.
- [7] H.-D.O.F. Gronau. An Erdős–Ko–Rado type theorem. Finite and infinite sets, Vol. I,II (Eger, 1981) Colloq. Math. Soc. J. Bolyai, 37:333–342, 1984.
- [8] N. Tokushige. A frog's random jump and the Pólya identity. *Ryukyu Math. Journal*, 17:89–103, 2004.

College of Education, Ryukyu University, Nishihara, Okinawa, 903-0213 Japan

E-mail address: hide@edu.u-ryukyu.ac.jp