
EXTENDING MUIRHEAD’S INEQUALITY

MITSUO KATO, MASASHI KOSUDA, AND NORIHIDE TOKUSHIGE

Abstract. We present a method to prove an inequality concerning a
linear combination of symmetric monomial functions. This is based on
Muirhead’s inequality combining with a graph theoretical setting. As
an application we prove some interesting inequalities motivated from
extremal combinatorics.

1. Introduction

We start with the following conjecture due to the last author.

Conjecture 1. Let r ≥ 3 be an integer, let a1, . . . , ar ∈ (0, 1) be real num-
bers, and let a = a1 · · · ar. Then we have

r∏
i=1

(
ai + a2i + · · ·+ ar−1

i + ari
)
−

r∏
i=1

(
ai + a2i + · · ·+ ar−1

i + a
)
≥ 0 (1)

with equality holding if and only if a1 = · · · = ar.

This conjecture is motivated by study of multiply intersecting hyper-
graphs, where one of the main tools is the so-called random walk method,
see Chapter 15 of [1]. Here we briefly explain how Conjecture 1 is related
to a problem of random walk. Let p ∈ (0, 1 − 1

r ) be a real number, and

let us define an infinite random walk Wp in the two-dimensional grid Z2.
The walk Wp starts at the origin, and at each step it moves from (x, y) to
(x, y+1) (one step up) with probability p and from (x, y) to (x+1, y) (one
step right) with probability 1 − p. Then Wp hits the line y = (r − 1)x + 1
with probability αp, where αp ∈ (0, 1) is a unique root of the equation

X = p+ (1− p)Xr.

Let p1, . . . , pr ∈ (0, 1 − 1
r ) be real numbers. Let W ′ be another infinite

random walk defined similarly to Wp, but this time, at step j (j = 1, 2, . . . )
the walk takes up with probability pi and right with probability 1−pi, where
i := j mod r. This walk W ′ hits the line y = (r − 1)x + r with probability
β, where β ∈ (0, 1) is a unique root of the equation

X =
r∏

i=1

(pi + (1− pi)X).

Key words and phrases. symmetric monomial function, Muirhead’s inequality, maxi-
mum flow, Young diagram.
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We are interested in β because we can use it to bound the measure of
multiply intersecting hypergraphs. We also mention that computing (or
approximating) β is more difficult than that of αp. Thus it is desirable that
β is bounded in terms of αpi . Indeed we conjecture that β ≤ αp1αp2 · · ·αpr ,
which follows from (1) (if true). See Appendix for the proof.

In this paper we prove Conjecture 1 for the cases 3 ≤ r ≤ 11 with aid
of computer search. For the proof we extend Muirhead’s inequality, and
propose an approach to prove a more general inequality concerning a linear
combination of symmetric monomial functions.

Let r and d be fixed positive integers, and let

Λ := {λ = (λ1, . . . , λr) ∈ Zr : λ1 ≥ · · · ≥ λr ≥ 0, |λ| = d}, (2)

where |λ| := λ1+ · · ·+λr, that is, Λ is a set of non-increasing sequences (vec-
tors) representing a partition of d into r parts. For λ ∈ Λ we define the sym-
metric monomial functions mλ(x) of degree d in variables x = (x1, . . . , xr)
by

mλ(x) :=
∑
σ

xσ =
∑
σ

r∏
i=1

xσi
i ,

where the sums run over all distinct orderings (permutations) σ = (σ1, . . . , σr)
of the vector λ = (λ1, . . . , λr). We also define the normalized symmetric
monomial functions m̄λ(x) by

m̄λ(x) :=
mλ(x)

mλ(1)
.

For example, if r = d = 4 and λ = (2, 2, 0, 0) then

mλ(x) = x21x
2
2 + x21x

2
3 + x21x

2
4 + x22x

2
3 + x22x

2
4 + x23x

2
4,

and m̄λ(x) = mλ(x)/6. (For more about monomial symmetric functions, see
e.g., Chapter 7 of [5].) For λ, µ ∈ Λ we write m̄λ ≥ m̄µ if m̄λ(x) ≥ m̄µ(x)
holds for all x ≥ 0, where x ≥ 0 means that x = (x1, . . . , xr) satisfies xi ≥ 0
for all 1 ≤ i ≤ r. In [4] (see also [2, 3]) Muirhead proved that

m̄λ ≥ m̄µ if and only if λ ≻ µ,

where λ ≻ µ means

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi for all 1 ≤ i ≤ r. (3)

Moreover m̄λ(x) = m̄µ(x) if and only if λ = µ or x1 = · · · = xr.
Now we define a bipartite graph G = (V (G), E(G)) corresponding to Λ as

follows. For the vertex set let V (G) = U ⊔ U ′, where U and U ′ are distinct
copies of Λ. Then two vertices λ ∈ U and λ′ ∈ U ′ are adjacent in G if and
only if λ ≻ λ′. Let c : V (G) → R≥0 be a given capacity function. We say
that a flow ϕ : E(G) → R≥0 is optimal if∑

λ∈e
ϕ(e) ≤ c(λ) for all λ ∈ U, and

∑
λ′∈e

ϕ(e) = c(λ′) for all λ′ ∈ U ′.
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Let α : Λ → R≥0, which can be viewed as a coefficient vector α = (αλ :
λ ∈ Λ) ∈ RΛ

≥0. Then we define a linear combination of normalized symmetric
monomial functions

m̄(α) :=
∑
λ∈Λ

αλm̄λ. (4)

Let α, α′ ∈ RΛ
≥0 and let c be a capacity function on V (G) = U ⊔ U ′ defined

by c = α on U and c = α′ on U ′. We say that α suppresses α′, denoted by
α ≻ α′, if G admits an optimal flow. While the Muirhead’s inequality says
that if λ ≻ µ then m̄λ ≻ m̄µ, our result stated below claims that if α ≻ α′

then m̄(α) ≥ m̄(α′). This can be seen as an extension from the inequality
about normalized symmetric monomial functions to the inequality about
linear combinations of them.

Theorem 1. Let α, α′ ∈ RΛ
≥0. If α ≻ α′ then m̄(α) ≥ m̄(α′) with equality

holding if and only if the following two conditions are satisfied:

(i)
∑

λ∈e ϕ(e) = c(λ) for all λ ∈ U , and
(ii) m̄λ ≥ m̄λ′ for all adjacent λ ∈ U and λ′ ∈ U ′.

Proof. Let G be the bipartite graph on V (G) = U ⊔ U ′ defined above, and
let ϕ be an optimal flow. If λ ∈ U and λ′ ∈ U ′ are adjacent by an edge e in
G, then m̄λ ≥ m̄λ′ and ϕ(e)m̄λ ≥ ϕ(e)m̄λ′ . Using this trivial fact we have

m̄(α) =
∑
λ∈U

c(λ)m̄λ

≥
∑
λ∈U

(∑
λ∈e

ϕ(e)

)
m̄λ

=
∑

e∈E(G)

∑
λ∈e

ϕ(e)m̄λ

≥
∑

e∈E(G)

∑
λ′∈e

ϕ(e)m̄λ′

=
∑
λ′∈U ′

(∑
λ′∈e

ϕ(e)

)
m̄λ′

=
∑
λ′∈U ′

c(λ′)m̄λ′

= m̄(α′).

One can readily verify the equality conditions. □

We note that m̄(α) ≥ m̄(α′) does not necessarily imply α ≻ α′, see
Example 1 in the last section. Using Theorem 1 we were able to verify
Conjecture 1 for 3 ≤ r ≤ 11.

Theorem 2. Conjecture 1 is true for 3 ≤ r ≤ 11.
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Though our proof of Theorem 2 is based on Theorem 1, we need two more
ideas. First, we actually prove a stronger inequality (see Conjecture 2) hold-
ing for all non-negative variables, from which we derive the inequality (1).
This is needed because (1) holds only for variables in the unit interval, while
Theorem 1 only applies to inequalities valid for all non-negative variables.
Second, as a bipartite graph applied to Theorem 1 we do not use the graph
whose vertex set is Λ because it is too large. Instead we construct a graph
on a much smaller vertex set which has a nicer poset structure induced by
(3) (see Theorem 3). This reduces the computation markedly.

2. Proof of Theorem 2

Throughout this section let r ≥ 3 be a fixed integer. As mentioned in the
end of the previous section the inequality (1) is not suitable for applying
Theorem 1. So we should find an inequality which holds for all non-negative
variables and implies (1). This inequality will be obtained by factorizing
(1).

For s = (s1, . . . , sr) and 1 ≤ k ≤ r we define the elementary symmetric
functions ek(s) by

ek(s) :=
∑

i1<···<ik

si1 · · · sik ,

see, e.g., [5]. Let e0(s) := 1. Then we have

r∏
i=1

(si + z) =
r∑

k=0

ek(s)z
r−k.

To factorize the LHS of (1), we apply the above identity to s = (s1, . . . , sr),
where

si = ai + a2i + · · ·+ ar−1
i , (5)

and z = 1 or z = a. Then we have

r∏
i=1

(
ai + a2i + · · ·+ ar−1

i + ari
)
=

r∏
i=1

ai(1 + si) = a
r∏

i=1

(si + 1) =
r∑

k=0

ek(s)a,

r∏
i=1

(
ai + a2i + · · ·+ ar−1

i + a
)
=

r∏
i=1

(si + a) =
r∑

k=0

ek(s)a
r−k.
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Thus, writing ek instead of ek(s) for simplicity, the LHS of (1) is rewritten
as

r∑
k=0

(a− ar−k)ek

=
r−2∑
k=0

(a− ar−k)ek − (1− a)er

= (a− ar)e0 + (a− ar−1)e1 + · · ·+ (a− a2)er−2 − (1− a)er

= (1− a)
(
F̃ − G̃),

where

F̃ = (a+ a2 + · · ·+ ar−1)e0 + (a+ · · ·+ ar−2)e1 + · · ·+ (a+ a2)er−3 + aer−2,

G̃ = er.

Letting

fi = e0 + e1 + · · ·+ ei, (6)

we have

F̃ = a(e0 + e1 + · · ·+ er−2) + a2(e0 + · · ·+ er−3) + · · ·+ ar−2(e0 + e1) + ar−1e0,

= a(fr−2 + fr−3a+ · · ·+ f1a
r−3 + f0a

r−2),

and also

G̃ = er =
r∏

i=1

si =
r∏

i=1

ai(si/ai) = a
r∏

i=1

(1 + ai + · · ·+ ar−2
i ).

Consequently we obtain the following expression:

‘the LHS of (1)’ = a(1− a)(F −G),

where

F = fr−2 + fr−3a+ · · ·+ f1a
r−3 + f0a

r−2, (7)

G =

r∏
i=1

(1 + ai + · · ·+ ar−2
i ). (8)

Finally to prove Conjecture 1 it suffices to show the following conjecture.

Conjecture 2. Let r ≥ 3 be an integer, and let a1, . . . , ar be non-negative
real numbers. Then

F −G ≥ 0,

where F and G are defined by (7) and (8) with (5) and (6). Moreover,
equality holds if and only if a1 = · · · = ar.
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Note that Conjecture 2 is slightly stronger than Conjecture 1 because the
condition for ai is weaker. Moreover this condition is precisely what we need
to apply Theorem 1. Note also that F −G ≥ 0 if

F (d) −G(d) ≥ 0

for every d, where F (d) (resp. G(d)) denote the degree d part of F (resp. G).

Now we translate the problem of showing F (d)−G(d) ≥ 0 (for fixed r and
d) to a problem of finding an optimal flow. Recall the definitions of Λ and
m̄(α) from (2) and (4). Let α, α′ ∈ RΛ

≥0 be such that

m̄(α) = F (d) and m̄(α′) = G(d).

Then, by Theorem 1, F (d)−G(d) ≥ 0 follows from α ≻ α′. Thus our problem
is translated to show α ≻ α′. However the number of non-zero entries in
α and α′ grows rapidly as r grows, and it is not so easy to verify α ≻ α′

in this naive setting in practice. To overcome the difficulty we look at the
posets derived from the polynomials F (d) and G(d) in detail, and we reduce
the complexity using the structure of the posets.

Let Λ(α′) = {µ ∈ Λ : α′
µ > 0} be the set of partitions corresponding to

G(d). For µ ∈ Λ(α′) it follows from (8) that µ1 ≤ r − 2. We partition Λ(α′)
by the value of µr. Let

Λh = {λ ∈ Λ : λr = h}.

Then we have Λ(α′) =
⊔r−2

h=0 Q̃h, where

Q̃h = {µ ∈ Λh : µ1 ≤ r − 2}. (9)

Lemma 1. Let Λ(α) = {λ ∈ Λ : αλ > 0}. Then we have Λ(α) =
⊔r−2

h=0 P̃h,
where

P̃h = {λ ∈ Λh : λ1 ≤ r − 1 + h, λr−1−h = λr}. (10)

Proof. In view of (7), λ ∈ P̃h comes from fr−2−ha
h. Then, λ is decomposed

into two parts µ = (µ1, . . . , µr) from fr−2−h and ν = (ν1, . . . , νr) from ah.
By (5) and (6) we have

r − 1 ≥ µ1 ≥ · · · ≥ µr−h−2 ≥ 0 = µr−1−h = · · · = µr.

We also have ν1 = · · · = νr = h. Then the set of sequences λ = µ+ν defines
P̃h. □

We note that I := Λ(α) ∩ Λ(α′) is nonempty. For example we have

P̃r−2 = Q̃r−2 = {(r − 2, . . . , r − 2)}.

We want to look at Λ(α) \ I and Λ(α′) \ I rather than Λ(α) and Λ(α′). To
this end we need some preparation. Recall that Λ itself is a poset, and the
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bipartite graph G is defined on V (G) = U ⊔ U ′, where both U and U ′ are
distinct copies of Λ. For x ∈ RΛ let p(x) := (yλ : λ ∈ Λ), where

yλ :=

{
xλ if xλ > 0,

0 if xλ ≤ 0,

that is, p(x) extracts positive entries from x. Let β := p(α − α′) and β′ :=
p(α′ − α). Then α− α′ = β − β′ and

m̄(α)− m̄(α′) = m̄(α− α′) = m̄(β − β′).

So our aim is to show that m̄(β − β′) ≥ 0. These coefficient vectors β and
β′ define two subposets of Λ:

Λ(β) := {λ ∈ U : βλ > 0} and Λ(β′) := {µ ∈ U ′ : β′
µ > 0}.

These posets are equipped with a nice property as stated in the next theo-
rem, and this is the reason why we can efficiently verify the existence of an
optimal flow in G with the capacity function coming from β and β′.

Theorem 3. There exist unique positive integer k and partitions

Λ(β) = A1 ⊔ · · · ⊔ Ak,

Λ(β′) = B1 ⊔ · · · ⊔Bk,

with representatives λ̃1, . . . , λ̃k and µ̃1, . . . , µ̃k satisfying λ̃i = minAi, µ̃i =
maxBi, and λ̃i ≻ µ̃i for all 1 ≤ i ≤ k.

For a concrete example of such partitions, see Example 2 in the next sec-
tion. We remark that Ai (resp. Bi) does not necessarily have the maximum
(resp. minimum) element, see Example 3.

We partition Λ(β) and Λ(β′) by the value of the last element. It follows

from (9) and (10) that Λ(β) =
⊔r−3

h=0 Ph and Λ(β′) =
⊔r−3

h=0Qh, where

Ph = {λ ∈ Λh : r − 1 ≤ λ1 ≤ r − 1 + h, λr−1−h = λr},
Qh = {µ ∈ Λh : µ1 ≤ r − 2, µr−1−h > µr}.

Then the disjoint union Ph ⊔Qh is a proper subset of Λh.
We have already fixed r and d, and now we fix h. We will define two

maps D∞ : Ph → Qh and U∞ : Qh → Ph, which will play a key role for
the proof of Theorem 3. To this end we need two auxiliary maps D and
U (down and up, respectively). Before going into the details of the proof
we explain our plan. Let λ ∈ Ph and µ ∈ Qh with λ ≻ µ. We can draw
the Young diagrams corresponding to λ and µ, and starting from λ we can
get µ by moving a box at a right upper corner to a left lower corner one by
one. (We will give a formal definition of such operations shortly.) In this
process we can find D∞(λ) and U∞(µ) such that λ ≻ U∞(µ) ≻ D∞(λ) ≻ µ
with some additional nice properties. Actually we will get D∞(λ) from λ
by repeating the down map D finitely many times, and we will get U∞(µ)
from µ by repeating the up map U finitely many times.
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Definition 1. For λ ∈ Λh \Qh define p and q as follows.
(Case I) If λ1 ≥ r − 1 then

p = max{i : λi = λ1},
q = min{i : λi ≤ λ1 − 2}.

(Case II) If λ1 < r − 1 and λr−1−h = λr then

p = max{i : λi ≥ λr + 2},
q = min{i : λi = λr}.

Define a map D : Λh → Λh by D(λ) := λ′ if λ ̸∈ Qh, where

λ′
i =


λp − 1 if i = p,

λq + 1 if i = q,

λi otherwise,

and by D(λ) := λ if λ ∈ Qh. (See Example 2.)

Definition 2. For µ ∈ Λh \ Ph define p and q as follows.
(Case III) If µr−1−h > µr then

p = min{i : µi = µr−2−h},
q = max{i : µi > µr}.

(Case IV) If µr−1−h = µr and µ1 ≤ r − 2 then

p = 1,

q = max{i : µi = µ2}.

Define a map U : Λh → Λh by U(µ) := µ′ if µ ̸∈ Ph, where

µ′
i =


µp + 1 if i = p,

µq − 1 if i = q,

µi otherwise,

and by U(µ) := µ if µ ∈ Ph.

Lemma 2. Let λ ∈ Λh \Qh and µ ∈ Qh. If λ ≻ µ then D(λ) ≻ µ.

Proof. Let λ′ = D(λ). By definition of λ′ we only need to check that

λ′
1 + · · ·+ λ′

i ≥ µ1 + · · ·+ µi (11)

for all p ≤ i < q because if i < p or i ≥ q then the sum for λ′ and the sum
for λ are the same.

For Case I we have λ′
i ≥ λi − 1 ≥ r − 2 ≥ µi for each p ≤ i < q, which

yields (11).
For Case II we note that if p < j < q then h+1 = λj ≤ µj and h = λq < µq

(and if j > q then λj = µj). Hence, for p ≤ i < q, we have

λi+1 + · · ·+ λr < µi+1 + · · ·+ µr.
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Since |λ| = |µ| = d it follows that

λ1 + · · ·+ λi > µ1 + · · ·+ µi.

Thus we have

λ′
1 + · · ·+ λ′

p + · · ·+ λ′
i = λ1 + · · ·+ (λp − 1) + · · ·+ λi ≥ µ1 + · · ·+ µi,

as needed. □
Lemma 3. Let µ ∈ Λh \ Ph and λ ∈ Ph. If λ ≻ µ then λ ≻ U(µ).

Proof. Let µ′ = U(µ). We only need to show that

λ1 + · · ·+ λi ≥ µ′
1 + · · ·+ µ′

i

for all p ≤ i < q.
For Case III suppose, to the contrary, that

λ1 + · · ·+ λi + 1 ≤ µ′
1 + · · ·+ µ′

i (12)

for some p ≤ i < q. The RHS is equal to µ1 + · · · + µi + 1, and at most
λ1 + · · ·+ λi + 1 because λ ≻ µ. Thus we have

λ1 + · · ·+ λi = µ1 + · · ·+ µi. (13)

Since |λ| = |µ| we also have λi+1 + · · · + λr = µi+1 + · · · + µr. Moreover,
noting λj < µj for r − 1 − h ≤ j ≤ q, and λj = µj for q < j ≤ r, we have
that p ≤ i < r − 1− h and

λi+1 + · · ·+ λr−2−h > µi+1 + · · ·+ µr−2−h.

This together with µi+1 = µr−2−h gives us λi+1 > µi+1 and

λi ≥ λi+1 > µi+1 = µi.

On the other hand it follows from (13) and λ1+ · · ·+λi−1 ≥ µ1+ · · ·+µi−1

that λi ≤ µi. This is a contradiction.
For Case IV suppose (12). Since λ1 ≥ r−1 ≥ µ1+1 = µ′

1 we may assume
that 2 ≤ i < q. Using λ1 > µ1 and µ2 = µi with (13) we have λi < µi. Then
λi+1 ≤ λi < µi = µi+1 and

λ1 + · · ·+ λi+1 = µ1 + · · ·+ µi + λi+1 < µ1 + · · ·+ µi + µi+1,

which contradicts the assumption λ ≻ µ. □
Let Dn = (D ◦ · · · ◦D) (n times), and define D∞ = limn→∞Dn. If λ ∈ Ph

then D∞(λ) = Dn(λ) for some n ≤ r. Indeed we first repeat Case I until
λ1 < r − 1, and next repeat Case II until λr−1−h > λr, and then eventually
the resulting λ comes into Qh. Thus D

∞ is a map from Ph to Qh. Similarly
we define a map U∞ : Qh → Ph by U∞ = limn→∞ Un, which is actually
obtained by applying U at most r times. By Lemma 2 and Lemma 3 we get
the following results. (See Example 3.)

Lemma 4. Let λ ∈ Ph and µ ∈ Qh with λ ≻ µ.

(1) D∞(λ) ≻ µ and D∞(λ) = max{µ′ ∈ Qh : λ ≻ µ′}.
(2) λ ≻ U∞(µ) and U∞(µ) = min{λ′ ∈ Ph : λ′ ≻ µ}.



10 MITSUO KATO, MASASHI KOSUDA, AND NORIHIDE TOKUSHIGE

Lemma 5. It follows that

(i) (U∞ ◦D∞)(λ) = λ for all λ ∈ U∞(Qh), and
(ii) (D∞ ◦ U∞)(µ) = µ for all µ ∈ D∞(Ph).

Proof. Let µ ∈ Qh, and define λ := U∞(µ), µ′ := D∞(λ), and λ′ := U∞(µ′).
Since λ = U∞(µ) we have λ ≻ µ. Then by (1) of Lemma 4 we have

µ′ = D∞(λ) = max{µ′′ ∈ Qh : λ ≻ µ′′} ≻ µ.

Thus {λ′′ ∈ Ph : λ′′ ≻ µ′} ⊂ {λ′′ ∈ Ph : λ′′ ≻ µ} and taking the minimum
element of each set we get λ′ ≻ λ. On the other hand λ ≻ µ′ follows
from µ′ = D∞(λ). Applying (2) of Lemma 4 we obtain λ ≻ U∞(µ′) = λ′.
Consequently λ = λ′ and (U∞ ◦D∞)(λ) = U∞(µ′) = λ′ = λ. This proves
(i) of this lemma. One can show (ii) similarly. □

Proof of Theorem 3. By Lemma 5 there exists k = k(h) such that U∞(Qh) =

{λ̃1, . . . , λ̃k} and D∞(Ph) = {µ̃1, . . . , µ̃k}. For 1 ≤ i ≤ k let

Ai = {λ ∈ Ph : (U∞ ◦D∞)(λ) = λ̃i},
Bi = {µ ∈ Qh : (D∞ ◦ U∞)(µ) = µ̃i}.

Then Ph = A1 ⊔ · · · ⊔ Ak and Qh = B1 ⊔ · · · ⊔ Bk. Moreover, by Lemma 4,
we have λ̃i = minAi and µ̃i = maxBi. Finally we get the desired partitions

Λ(β) =
⊔r−3

h=0

⊔k(h)
i=1 Ai and Λ(β′) =

⊔r−3
h=0

⊔k(h)
i=1 Bi. □

Using Theorem 3 we can further reduce the problem and decrease the
computation sharply. This reduction is based on the following simple obser-
vation. By Theorem 3 we have λ̃i = minAi implying∑

λ∈Ai

βλm̄λ ≥ c̃i m̄λ̃i
,

where c̃i :=
∑

λ∈Ai
βλ, and similarly∑

µ∈Bi

β′
µm̄µ ≥ c̃′i m̄µ̃i ,

where c̃′i :=
∑

µ∈Bi
β′
µ. So we define two coefficient vectors s, s′ ∈ RΛ

≥0 as
follows: for each λ, µ ∈ Λ let

sλ :=

{
c̃i if λ = λ̃i for some i,

0 otherwise,
and s′µ :=

{
c̃′i if µ = µ̃i for some i,

0 otherwise.

Then it follows from the definition that m̄(β) ≥ m̄(s), m̄(s′) ≥ m̄(β′), and

m̄(β − β′) ≥ m̄(s− s′).

Thus our aim is now reduced to showing s ≻ s′, which yields m̄(s− s′) ≥ 0
and so m̄(β − β′) ≥ 0, as required. Finally, similarly as we changed from
α, α′ to β, β′ we modify s, s′ one last time to get t, t′ ∈ RΛ

≥0 by t := p(s− s′)
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and t′ := p(s′ − s). Since t − t′ = s − s′ it suffices to show t ≻ t′ to verify
s ≻ s′, see Example 4 in the next section. In summary we have shown that

m̄(α)− m̄(α′) = m̄(β)− m̄(β′) ≥ m̄(s)− m̄(s′) = m̄(t)− m̄(t′).

The point is that the number of non-zero entries in t and t′ is much smaller
than those in α and α′, for example, if r = 11 and d = 52 then the former
is only 367 while the latter is 6594. This is the reason why such reductions
make the computation much faster. Consequently we can complete the
proof of Conjecture 2 by showing t ≻ t′, and we have indeed verified this for
3 ≤ r ≤ 11 (and all d) with aid of a computer.

Thus the inequality in Conjecture 2 holds for 3 ≤ r ≤ 11. Moreover if
a1 = · · · = ar, then clearly F −G = 0. On the other hand if F −G = 0 then
we need m̄(α) − m̄(α′) = 0. This together with (ii) of Theorem 1 implies
that m̄λ = m̄λ′ for all adjacent λ and λ′ in the graph G. Therefore all ai
are the same, which verifies the equality condition in Conjecture 2. This
completes the proof of Theorem 2.

3. Some examples

Example 1. We present an example showing that the converse of Theorem 1
does not hold, that is, an example satisfying m̄(α) ≥ m̄(α′) but α ̸≻ α′.

Let r = 2 and d = 4. Then Λ = {(4, 0), (3, 1), (2, 2)}, and

m̄(4,0)(x) =
1
2(x

4
1 + x42), m̄(3,1)(x) =

1
2(x

3
1x2 + x1x

3
3), m̄(2,2)(x) = x21x

2
2.

Let α = (2, 0, 2) and α′ = (0, 4, 0). Then we have

m̄(α) = 2m̄(4,0)(x) + 2m̄(2,2)(x) = (x41 + x42) + 2x21x
2
2,

m̄(α′) = 4m̄(3,1)(x) = 2(x31x2 + x1x
3
2).

A routine calculus shows that m̄(α) ≥ m̄(α′) for all x1, x2 ≥ 0.
Let G be the corresponding bipartite graph. Then, by writing only vertices

with positive capacities, we have V (G) = {(4, 0), (2, 2)} ⊔ {(3, 1)}. There is
only one edge joining (4, 0) and (3, 1), where the capacity of (4, 0) is 2 while
the capacity of (3, 1) is 4. Thus there is no optimal flow, and α ̸≻ α′.

Example 2. Let r = 8, d = 29, and h = 0. Let λ̃ = (7, 7, 5, 4, 4, 2, 0, 0) ∈ P0

and µ̃ = (6, 6, 6, 5, 4, 1, 1, 0) ∈ Q0. We get the following sequence by applying
D:

λ̃ −→ (7, 6, 6, 4, 4, 2, 0, 0) −→ (6, 6, 6, 5, 4, 2, 0, 0) −→ µ̃.

This shows that D∞(λ̃) = D3(λ̃) = µ̃. See Figure 1, where the map D sends
a box with ‘•’ to the position marked by ‘×.’

Example 3. (Continued from Example 2) Let

A := {λ ∈ P0 : (U
∞ ◦D∞)(λ) = λ̃},

B := {µ ∈ Q0 : (D
∞ ◦ U∞)(µ) = µ̃}.



12 MITSUO KATO, MASASHI KOSUDA, AND NORIHIDE TOKUSHIGE

Then it follows that A = {76554200, 76555100, 76644200, λ̃}, and B = {µ̃},
and moreover minA = λ̃ (but A does not have the maximum element) and
maxB = µ̃, see Figure 2, where black arrows correspond to D and red
arrows correspond to U .

Example 4. We describe the partitions in Theorem 3 for the case r = 7
and d = 15. Then Λ(β) = {λ1, . . . , λ19} and Λ(β′) = {µ1, . . . , µ19} listed
below with their capacities, e.g., λ1 = (6, 2, 2, 2, 1, 1, 1) and c(λ1) = 140.

λ1 6222111 140 µ1 3322221 105

λ2 6321111 210 µ2 3332211 210

λ3 6411111 42 µ3 3332220 140

λ4 7221111 105 µ4 3333210 210

λ5 7311111 42 µ5 4222221 42

λ6 6322200 420 µ6 4322211 420

λ7 6332100 1260 µ7 4322220 210

λ8 6333000 140 µ8 4332210 1260

λ9 6422100 1260 µ9 4333110 420

λ10 6431100 1260 µ10 4422210 420

λ11 6432000 840 µ11 4432110 1260

λ12 6441000 420 µ12 4441110 140

λ13 6521100 1260 µ13 5222211 105

λ14 6522000 420 µ14 5222220 42

λ15 6531000 840 µ15 5322210 840

λ16 6540000 210 µ16 5332110 1260

λ17 6611100 210 µ17 5422110 1260

λ18 6621000 420 µ18 5431110 840

λ19 6630000 105 µ19 5521110 420

Then we can view Λ(β) and Λ(β′) as posets, where the partial order is
introduced by the majorization. Figure 3 shows the corresponding Hasse

diagrams, where λi is denoted by i and µj is denoted by j .

The partitions in Theorem 3 in this case are

Λ(β) = A1 ⊔A2 ⊔A3 ⊔A4,

Λ(β′) = B1 ⊔B2 ⊔B3 ⊔B4,
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where

A1 = {λi : 1 ≤ i ≤ 5}, B1 = {µ1, µ2, µ5, µ6, µ13},
A2 = {λ6}, B2 = {µ3, µ4, µ7, µ8, µ10, µ14, µ15, µ16, µ17},
A3 = {λ7, λ8}, B3 = {µ9, µ11, µ12, µ18},
A4 = {λi : 9 ≤ i ≤ 19}, B4 = {µ19}.

The representatives λ̃i = minAi and µ̃i = maxBi are given by

λ̃1 = λ1, λ̃2 = λ6, λ̃3 = λ7, λ̃4 = λ9,

µ̃1 = µ13, µ̃2 = µ17, µ̃3 = µ18, µ̃4 = µ19.

Example 5. Here we present an example of the reduction after applying
Theorem 3. Let r = 8, d = 29. In this case the number of partitions
in Theorem 3 is k = 12, and the corresponding representatives are listed
below.

λ̃1 = 74333333, λ̃2 = 75542222, λ̃3 = 75544400, λ̃4 = 75554111,

λ̃5 = 75554300, λ̃6 = 75555200, λ̃7 = 76544111, λ̃8 = 76544300,

λ̃9 = 76553111, λ̃10 = 76553300, λ̃11 = 76554200, λ̃12 = 76653200,

µ̃1 = 54443333, µ̃2 = 66533222, µ̃3 = 66544310, µ̃4 = 66553211,

µ̃5 = 66554210, µ̃6 = 66555110, µ̃7 = 66643211, µ̃8 = 66644210,

µ̃9 = 66652211, µ̃10 = 66653210, µ̃11 = 66654110, µ̃12 = 66663110.

The corresponding capacities are the following.

c̃1 = 64, c̃2 = 13272, c̃3 = 2520, c̃4 = 1120,

c̃5 = 3360, c̃6 = 840, c̃7 = 6720, c̃8 = 11760,

c̃9 = 75936, c̃10 = 16800, c̃11 = 23520, c̃12 = 93800,

c̃′1 = 336, c̃′2 = 27272, c̃′3 = 74536, c̃′4 = 91568,

c̃′5 = 21840, c̃′6 = 1680, c̃′7 = 6720, c̃′8 = 11200,

c̃′9 = 1680, c̃′10 = 7840, c̃′11 = 3360, c̃′12 = 1680.

Then to construct t and t′ we compute

c̃1 − c̃′1 = −272, c̃2 − c̃′2 = −14000, c̃3 − c̃′3 = −72016, c̃4 − c̃′4 = −90448,

c̃5 − c̃′5 = −18480, c̃6 − c̃′6 = −840, c̃7 − c̃′7 = 0, c̃8 − c̃′8 = 560,

c̃9 − c̃′9 = 74256, c̃10 − c̃′10 = 8960, c̃11 − c̃′11 = 20160, c̃12 − c̃′12 = 92120.

Figure 4 shows the reduced graph for t and t′, that is, the top five vertices
are corresponding to m̄(t) and the bottom six vertices are corresponding

to m̄(t′), and λ̃ and µ̃ are adjacent if λ̃ ≻ µ̃. In this picture we label the
vertices by c̃i − c̃′i instead of the capacity |c̃i − c̃′i|. Then one of the optimal
flows is shown in Figure 5.
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4. Appendix

Write ai for αpi , and let qi = 1− pi.

Fact 1. Let t ≥ 1 be an integer, and let lj be the line y = (r − 1)x + j.
Then the walk Wpi hits the line lt with probability ati, and the walk W ′ hits
the line lrt with probability βt.

Proof. Suppose that the probability that the walk Wpi hits the line lt is given
by Xt for some X ∈ (0, 1). After the first step, the walk is at (0, 1) with
probability pi, and at (1, 0) with probability qi. From (0, 1) the probability
for the walk hitting lt is Xt−1, and from (1, 0) the probability is Xt−1+r.
Then it follows

Xt = piX
t−1 + qiX

t−1+r,

that is,

X = pi + qiX
r.

Thus X = ai, and the walk hits the line lt with probability ati.
Next suppose that the probability that the walk W ′ hits the line lrt is

given by Y t for some Y ∈ (0, 1). After the first r steps, it is at (x, r − x)
with probability ∑

I∈([r]x )

∏
i∈I

pi
∏

j∈[r]\I

qj ,

where [r] = {1, 2, . . . , r}. From (x, r−x) the probability for the walk hitting
lrt is Y

x+t−1. This yields

Y t =

r∑
x=0

Y x+t−1
∑

I∈([r]x )

∏
i∈I

pi
∏

j∈[r]\I

qj ,
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that is,

Y =
r∑

x=0

Y x
∑

I∈([r]x )

∏
i∈I

pi
∏

j∈[r]\I

qj =

r∏
i=1

(pi + qiY ).

Thus Y = β, and the walk hits the line lrt with probability βt. □

Define a polynomial f(x) by

f(X) := −X +

r∏
i=1

(pi + qiX).

By definition f(β) = 0.

Fact 2. If 0 < y < 1 and f(y) ≤ 0, then β ≤ y.

Proof. This follows because f(0) > 0, f(1) = 0, f ′(1) = −1 +
∑r

i=1 qi >

−1 + r · 1
r = 0 (here we used pi < 1− 1

r ), and f ′′(x) > 0 for x > 0. □

Fact 3. The inequality a := a1 · · · ar ≤ β follows from (1).

Proof. By Fact 2 it suffices to show f(a) ≤ 0. Since ai = pi + qia
r
i we have

a = a1 · · · ar =
r∏

i=1

(pi + qia
r
i ),

and

f(a) = −a+
r∏

i=1

(pi + qia) = −
r∏

i=1

(pi + qia
r
i ) +

r∏
i=1

(pi + qia).

So we need to show

r∏
i=1

(pi + qia) ≤
r∏

i=1

(pi + qia
r
i ). (14)

Solving ai = pi + (1− pi)a
r
i for pi gives

pi =
ai − ari
1− ari

.

Then

pi + qia =
ai − ari
1− ari

+

(
1− ai − ari

1− ari

)
a =

1

1− ari
(ai − ari + (1− ai)a) ,

pi + qia
r
i = ai =

1

1− ari
(ai(1− ari )) .
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Noting that 0 < ai < 1 we see that (14) is equivalent to
r∏

i=1

(ai − ari + (1− ai)a) ≤
r∏

i=1

ai(1− ari )

⇐⇒
r∏

i=1

(
1− ar−1

i + (1− ai)
a

ai

)
≤

r∏
i=1

(1− ari )

⇐⇒
r∏

i=1

(
1 + ai + · · ·+ ar−2

i +
a

ai

)
≤

r∏
i=1

(
1 + ai + · · ·+ ar−1

i

)
,

and multiplying both sides by a = a1 · · · ar we get (1). □

•
×

•

×

•
×

D

Case:I

D

Case:I

D

Case:II

Figure 1. The down map sending λ̃ = 77544200 to µ̃ = 66654110

≻ ≺

66654110

66654200 66655100

76554200

7655510076644200

77544200

Q0

P0A

B

Figure 2. Example for Lemma 4 and Lemma 5
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Λ(β)

Λ(β′)

1

2

34

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

Figure 3. Hasse diagram of Λ(β) and Λ(β′) as posets for
r = 7 and d = 15

Figure 4. The reduced graph for t and t′ (r = 8 and d = 29)
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Figure 5. An optimal flow in the reduced graph (r = 8 and
d = 29)


