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Let X be a finite set. The family of all k-element subsets of X is denoted by ()k() We
always assume that | X| is sufficiently large with respect to k. A family F C ()k() is called
k-uniform. The vertex set of F, denoted by V(F), is defined to be gz F', which is a
subset of X in general. An element of F is called an edge of F. A family F C ()k() is
called intersecting if F NG # 0 holds for every F,G € F. A set C' C X is called a cover of
F if it intersects every edge of F,i.e., C' N F # ( holds for all F' € F. A cover C is also
called t-cover if |C'| = t. The covering number 7(F) of F is the minimum cardinality of
the covers of F. The degree of a vertex z if F is the number of edges in F containing x,

Uniform intersecting families with covering number
restrictions

Peter Frankl
CNRS, ER 175 Combinatoire,
54 Bd Raspail, 75006 Paris, France

Katsuhiro Ota
Department of Mathematics, Keio Univ.,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223 Japan

Norihide Tokushige
Department of Computer Science, Meiji Univ.,
1-1-1 Higashimita, Tama-ku, Kawasaki, 214 Japan

June 16, 1994

Abstract

It is known that any k-uniform family with covering number ¢ has at most k!
t-covers. In this paper, we give better upper bounds for the number of ¢-covers in
k-uniform intersecting families with covering number ¢.

Introduction

and is denoted by degz(x).

For a family F C ()k() and an integer ¢t > 1, define

X
C{(F)=1{C ¢ (t) :C'NF # 0 holds for all F € F}.



Note that C4(F) = 0 for t < 7(F). Define
X\, :
pe(k) = max{|C{(F)| : F C (k) is intersecting and 7(F) > t}.

Note that |[Ci(F)| < k' was proved by Gyérfds[6] without the assumption of F being
intersecting. In that inequality, equality is attained only if F consists of ¢ pairwise disjoint
sets, in particular, for ¢ > 2 if F is non-intersecting. The aim of the present paper is to
attain better bounds for p,(k).

It is shown in [2] (see also [3] and [5]) that the maximum size of k-uniform intersecting
families with covering number ¢ is (p;—1(k) + o(1))(,",) as the number of vertices n tends
to infinity. So, it is greatly important to determine the value p,(k). See [1], [2], [3] and
[7] for the results on the maximum size of k-uniform intersecting families with covering
number restrictions.

One can easily see that pi(k) = k. For ¢t = 2 and 3, the value pi(k) is determined in
(2], [3] and [4].

Theorem A ([2]) Fork > 2, po(k) = k* — k + 1. []

Theorem B ([3], [4]) Fork =3 and k > 9, ps(k) = k° — 3k? + 6k — 4. ]
For a fixed ¢, the following conjecture is found in [4].

Conjecture 1 ([4]) pi(k) = k' — ()k1 + O(k'72). []
The coefficient of k~! in this conjecture is best possible if it is true.

Example 1 Let T' be any tournament with its vertex set {1,2,...,t}, and let o; be the
outdegree of the vertex v of T. Preparing t sets of vertices Xy, Xo, ..., Xy such that
| Xi| =k — a; for (1 <i<t), we define a family F; for each i (1 < i <1) as follows:

Fi={X;UA : |A| = a;, |[ANX;| =1 if and only if ¢ dominates j}
Then, F = Ul_, F; is a k-uniform intersecting family and 7(F) =t if k > t. Now, we
can get a t-cover of F by choosing any one vertex from each X; (1 < i <1t). Hence,
i

H X = J[(k — ) = k' - (Z ai) =+ ok ?)

=1

C(F)

v

kt _ (;) kt—l + O(kt_Z). I:l

In view of this example, we give the following conjecture.



Conjecture 2 Let F C ()k() be an intersecting family with 7(F) = t. Suppose that F

1s partitioned into t classes of edges Fy, Fo, ..., Fi, and that for each i, every edge
F € F; contains X;, where Xy, Xo, ..., Xy are pairwise disjoint subsets of X. Then,

Yimk- X > G 0

Obviously, Conjecture 1 implies Conjecture 2. One of the main results in this paper is
the other implication. In fact, we prove the following theorem, in which the function b(t)
is defined to be the minimum value of S°!_;(k — |X;|) among the families satisfying the
assumption of Conjecture 2. Note that b(¢) < (;) holds, by Example 1.

Theorem 1 p;(k) = k' — b(t)k!=! + O(k1=2). 0

Moreover, in Section 4, determining the exact value for b(4) and b(5), we show that
Conjecture 2, and hence Conjecture 1, is true for ¢t < 5.
For a general t, we prove the following theorem in Section 3.

Theorem 2 b(t) > LL%J% (]

Corollary 3 p,(k) < k' — 5| 5] Shi-1 4 O(k=2), 0

In the subsequent argument, we use the following propositions without explicit refer-
ence.

Proposition 1 ([6]) p:(k) < k. []

For a family A C 2% and vertices 2,y € X, we define

A(z) = {A€eA: ze A},

A(T) {Ae A : x¢gA},

Alzy) = {A€A :zeA, ye A},
A(zg) = {Ae€A : ze A, y¢A}, e,

and for Y C X,

AY) = {Ae A : Y C A},
AY) = {Ae A : YnA=0}

Proposition 2 ([4]) Suppose that F C ()k() is an intersecting family with 7(F) =1. Let
C =Cy(F). Then, for any subset A of X with |A] <, |C(A)| < p;_ja)(k) holds. []



2 Proof of Theorem 1

Throughout this section, we assume that ¢ is a fixed positive integer, k is suffliciently larger
than ¢, and that F C ()k() is an intersecting family with 7(F) = ¢ such that |C¢(F)| >
kt— (1) k!~t. We write simply C for Cy(F).

For A € F and z € A, define

vi(z,A) = #{Ce€Cl(z) : |CNnA| =i},
t
1
C(va) = Z ;72($7A)
=1
We call ¢(z, A) the contribution of © € A for |C|, because it is easy to see that |C| =
S eea c(@, A). Moreover, by the definition, |C(z)| = Yl 7i(z, A) holds.
Lemma 1 For any pair of edges A and B in F, |AN B| <t? or |AN B| >k —t? holds.

Proof Define a = |[AN B|. We assume that t* < a < k— 2. We estimate the contribution
of each vertex z € A for |C|.

If # € A— B, then every t-cover C' € C with C' N A = {z} must contain some vertex
y € B — A. For fixing y € B — A, we have |C(2y)| < pi—2(k) < k'=2. Hence,

vi(z,A) <|B = AlE'7? = (k= a)k' 2.
Thus,
o, 4) < e A)+ (0]~ (e, 4))

_ %(fyl(x,A) +le(a)))

1
O
— kt—l _ gkt_2
5 .

If # € AN B, then we have c(x,4) < |C(2)] < pi—1(k) < k1. By summing up all
contributions of z € A, we get
€l =S e(a,4) < (k—a) (k™" = SK2) 4 ak'™!
2
r€A

= gt gt n a’ =2

B 2 2 '
Since t? < a < k — t2, the RHS of the above inequality attains its maximum when a = 2.
So, [C| < k! — %kt_l + %kt_Q, which contradicts the assumption that [C] > k' — ({)kt?
and k> t.

The result of Lemma 1 implies that the set of edges in F is partitioned into the

equivalence classes Fy, Fo, ..., F,, where |AN B| > k — ¢ if and only if A and B are in
the same class F;.



Lemma 2 For each i (1 <i<7), |Npexr F| >k —1* holds.

Proof Fix i and A € 7. Let X; = Nper, F and a = [X;|. We assume that a < k — 2 If
z € A— X;, then there exists an edge B € F; such that ¢ B. Note that |[AN B| > k — ¢
and hence |B — A| < t%. By the same argument used in Lemma 1, we have y1(z,4) <
|B — A|k'™% < {?k'=2. Therefore,

(0 A) < S(nle,A) +IC()

1
< i(tzkt_2 + k).
If x € X, then ¢(z, A) < |C(x)] < k7. Thus,

= elz.A) < (k- a)%(tZkt_Q +EY) 4 akt!

r€EA
1
— §(k‘t + tth—l + a(kt—l _ tth—Q))
1
< §(kt_|_t2kt—1_|_(k_t2)(kt—l _tth—Z))
12 1
— k‘t _ _kt—l —k‘t_2.
2 + 2
This is a contradiction. [

Remark 1 By Lemma 2, 7(F;) = 1 holds for each i (1 < i < r). And hence, r >t must
hold, since T(F) =t. []

Lemma 3 r = ¢.

Proof Suppose that r > t+ 1. Choose one edge F; from each F;, 1 < i < ¢4 1, and define
H ={F,Fy...,Fiy1}. Let Y be the set of vertices of which the degree in H is at least
two. Note that |F; N F;| < t? if i # j, and hence |Y| < ("£')#%. On the other hand, every
t-cover of F must contain some vertex in Y. Thus,

el < Yo lewl < [Y]pe-alk)
yey

(t + 1)t2kt_1.
2

This is a contradiction. [ |

For each ¢ (1 <@ <), define X; = Mgz I and a; = k —[X;|. By Lemma 2, we have
a; < 2.



Remark 2 The vertex sets X1, Xo, ..., Xy are pairwise disjoint, for otherwise F can be
covered by at most t — 1 vertices. []

Lemma 4 |C| = k' — (ZZ 1 ) K=+ O(K2).
Proof Define

:{CE();) N X =1foralli, 1<i<t}.

Obviously, ¢’ C C = C¢(F), and

|C|_H|X|—H —042 —kt (Zal)ktl kt 2)

=1

Hence, in order to prove the lemma, it suffices to show that |C — C’'| = O(k!=2).

For each ¢ (1 <@ < t), let C; be the set of t-covers C' of F such that C' N X; = (. Fix
1 and A € F;. Since every t-cover ' € C; contains some vertex in A — X, there exists a
vertex ¢ € A — X; such that |C;(2)| > cY%|CZ| Now, there exists an edge B € F; such that
x ¢ B. Since every cover C' € C;(2) must contain some vertex in B — X;, there exists a
vertex y € B — X, such that |C;(zy)| > O%|CZ($)| > ;—2|C2|

On the other hand, |C;(zy)| < |C(zy)| < pt_g(k3 < k72, The last two inequalities
imply |C;] < a?k!=2 < t*kt=2. Thus,

¢
IC=C <G| < kT2 = O(K'?).
=1
This completes the proof of Lemma 4. [

Now, we can easily prove Theorem 1. Suppose that k is sufficiently large with respect
tot. Let F C ()]g) be an intersecting family with 7(F) = ¢ such that |C;(F)| = pi(k).
Because we know the fact that b(¢) < (}) (cf. Example 1),

i
CU(F)| > Kt — bk > & — (2) K1

Then, by Lemma 4,
IC{(F)| < k' = b(t)k™ + O(K2).

This completes the proof of Theorem 1. [



3 Proof of Theorem 2

We assume that F C ()k() be an intersecting family with 7(F) = ¢ such that F is partitioned
into t classes of edges F1, Fa, ..., Fy, and that for each ¢, every edge I’ € F; contains X,
where Xy, X, ..., X; are pairwise disjoint subset of X. Let | X;| =k —a; for 1 <i <t.

Define s = L%J Let Fy, F3, ..., F; be the edges of F such that F; and F} are in the
different classes of Fy, Fo, ..., Fyif ¢ # j. Define

H:{F17F27"'7Fs}'

We assume that Fi, F3, ..., Fy are chosen so that }°, ¢y (3)(degy(2) — 1) is maximum
possible. We may also assume that F; € F; for each i (1 < ¢ <'s). Let z1, 22, ..., 25 be
s vertices of H with degrees in H being largest possible. Define d = minj<;<, degy ().
Now,

degy(x;) > d for each i (1 <i<s), and
degy(y) <d foreachy € V(H)— {z1,22,...,25}.
Case 1. d > \/s/2.

Since degy(z;) > d for each 7 (1 <1 < ),
1 =
Z (degy(z)—1) > s(d—1) > —=s2 — s.
z€V (H) \/5
On the other hand,
Z (degy(z)— 1) =ks — |[V(H)| < ks — Z |X;| = Zai.
€V (H) =1 =1
Hence, we have Y 7, a; > %5% — 5. Moreover, since F is intersecting, at most one of
Qsi1y - .., 0y 18 0. Thus,

13 s
Zai > Zai—l—(t—s—l)
=1 =1

> (Lsg—s)—l—s =
V2

Wl

52,

L
V2
Case 2. d < \/s/2.

For each ¢ (1 < ¢ < s), choose one vertex y; € X;. Since 7(F) =t > 2s, there exists an
edge G € F such that G Nn{z1,...,25,%1,...,¥ys} = 0. We may assume that G € Fyyq.
We will find an edge F; € H such that (H — {F}}) U{G} contradicts the maximality of

Ywevryldegy(z) —1).



Let Y be the set of vertices y in V(H) such that degy(y) > 2, and define a; = |[F;NY|
for 1 <¢ < s. Then,

S

> (degy(z)—1) = > (degy(y) —1)=> a; —|Y].

2€V(H) yey i=1

Obviously, [Y| < 37, cv(x)(degy(a) — 1) holds, and hence,

iaz: Y (degy(a) =D+ [Y[<2 Y (degy(z)—1).

eV (H) €V (H)

I3 ey py(degp(z) — 1) > s(y/s/2 — 1), then by the same argument used in Case 1, we
are done. Hence, we may assume that 3.5 ; a; < 2s(y/s/2 — 1). Therefore, there exists
some [ (1 <1< s)such that a; < 2(y/s/2 — 1) = /25 — 2.

Now define H' = (H — {F;})U{G}. Let Z = V(H — {F;}) N G. Recall that G contains
none of the vertices z1, ..., 5. So, the degree of every vertex of Z in H (and hence, in
H — {F}}) is at most d < /s/2, while G must intersect with s — 1 edges of H — {F}}.
Therefore, |Z| > 251 > \/2s — /2[5 holds. Thus,

Y. (degpu(a)—1) = > (degy(z) —1) —ar+|Z]

eV (H') z€V(H)
> Y (degn(e) — 1) = (V35— 2) + (Vs — f2/5)
z€V(H)
> Y (degy(z) = 1)
z€V(H)
This contradicts the maximality of 3=, cy (y(degy () — 1). |

4  py(k) and p;(k)

In this section, we show that Conjecture 2, and hence Conjecture 1, is true for ¢ = 4 and
t=5.

Theorem 4 py(k) = k* — 6k + O(k?). (]
Theorem 5 ps(k) = k° — 10k* + O(K?). ]

Proofof Theorem 4 We will use the result of Theorem 1. Let F C ()2() be an intersecting
family with 7(F) = 4. Suppose that F is partitioned into four classes Fy, Fz, F3 and Fu
such that for each ¢ (1 < ¢ < 4), every edge I' € F; contains X;, where X1, X2, X3 and
X, are pairwise disjoint subsets of X. We may assume that | Xy| > | X3| > | X3] > [ X4].
We want to show that S5, (k — | X;|) > 6.



We use the following notation. For I C {1,2,3,4}, define F; = (J;c; Fi and X; =
Uier Xio T T = {4,j,...}, then we write F;;.. and X;;... instead of Fp;; 1 and X 3,
respectively. Note that 7(F;) = |I|, for otherwise, i.e., if 7(Fr) < |I|, then F can be
covered by at most three vertices.

Case 1. |X4] = k.
If | Xp| <k —2, then 3% (k — |X;]) > 6, and we are done. So, we may assume that
|Xo| = k& — 1. In this case, for any F' € Fio, F C X5 holds, i.e., N X34 = (. Since
T7(Fi2) = 2, every edge G € F34 contains at least two vertices of X719, in order to intersect
with all edges in Fj5. Hence, we have |X3| < k — 2. We may assume that | X3| = k£ — 2.
Then, V(Fi23) = Xi23. In particular, for every edge F' € Fia3, F'1 Xy = 0. Since
7(Fi23) = 3, every edge GG € Fy must contain at least three vertices of Xj33. Hence,
| X4| <k —3. Thus, S, (k — | X;]) > 6 has been proved.

Case 2. |Xq| <k-—1.
We may assume that | Xy| = |[X| = |X3] = £ — 1 and that |X4| = k —1 or k — 2. Let
H € Fy4. Since |H — X4| < 2 and 7(Fi23) = 3, H — X4 does not cover Fyoz. This implies
that there exists an edge F' € Fiq3 such that FFn H C X4. We may assume that 7 € F7.
In particular, F' C X14. Then, every edge G € F; (i = 2,3) consists of X; and some vertex
in ' C X14. In this situation, it is easy to see that some edge G' € F, and G’ € F3 do not
intersect, or that 7(Fy2) or 7(Fy3) is one, a contradiction.

Our proof of Theorem 5 is lengthy and tedious. So, we give only a part of the proof.

Proof of Theorem 5 (A Sketch) As assumed in the proof of Theorem 4, let F C ()2()
be an intersecting family with 7(F) = 5. Suppose that F is partitioned into five classes
F1, Fa, Fz, Fy and Fs such that for each i (1 < i < 5), every edge F' € F; contains X,
where X1, X9, X3, X4 and X5 are pairwise disjoint subsets of X.

We use the same notation used in the proof of Theorem 4. Also, we use the following
facts.

(1) For I C {1,2,3,4,5}, 7(F1) = |I] holds.
(2) ForFeFiand Ge F; (i# ), if FN(G—X;)=0, then FNn X, # 0.

(3) LetI C {1,2,3,4,5}. Suppose that V(Fr)NnX; = 0. Then, for every F' € F;, F'—X;
covers Fr. In particular, |F' — X;| =k — | X;| > |1].

We may assume that |Xq| > |X3| > | X35] > | X4| > | X5]. Now, we want to show that
S22 (k —|Xy]) > 10. So, we may also assume that |X;| > k — 1. We distinguish the
following five cases.

Case 1. |Xy| =k and |Xo| =k — 1.
Case 2. |Xy| =k and | Xo| < k—2.
Case 3. |X1| = |X2| = |X3| =k-1.



Case 4. |Xy|=|Xz|=Fk—1and |X3| <k -—2.
Case 5. |Xy|=k—1and | Xy <k —2.

Here, we consider only the last case (Case 5), that is the most complicated case in a
sense.
Now, we may assume that | X{| =k — 1 and | X3| = | X3| = | X4] = | X5| = k& — 2.

Subcase 5.1.  There exists an edge Ay € Fy such that Ay N Xosz45 # 0.

We may assume that A1 = X7 U {e1} with e; € X5. Let Eg be an edge in F5. Note that
|(Fo — X5)U{e1}| = 3. So, (Eo — X5)U{e1} does not cover Fazys. We may assume that
there exists an edge By € F, such that By N ((Fo — X5)U{ey}) = 0. This edge By must
intersect with Ay and Fy. Hence, By must contain a vertex a; of Xy and a vertex e; of
X5 (62 7£ 61), i.e., B1 = X2 U {01762}.

Consider the set {ay, ey, e2}, which does not cover Fizq5. We may assume that there
exists an edge Cy € F3 such that C; N {ay,e1,e2} = B. Since €y must intersect with Ay
and By, we can put Cy = X3 U {ag, b} with ay € X1 — {a1} and b; € X5.

The set {az, b1, e1} does not cover Fioys. So, there exists an edge Dy € Fy such that
Dy n{ag,br,e1} = 0. Since Dy must intersect with Ay and Cy, Di must contain some
vertex in Xy and some vertex in X3. Also, Dy intersects with By, and hence Dy must
contain ay. Let D1 = X4 U {a1,¢1} with ¢1 € Xa.

The set {ay,c1,e1} does not cover Fia35. So, there exists an edge By € Fy such that
Bon{ay,cq,e1} = 0. Since By must intersect with Ay and Dy, we can put By = XoU{a,d;}
where @ € X1 — {a1} and dy € X4.

The set {ag,by,cq,d;} does not cover F. So, there exists an edge £y € F5 such that
FEyn{ag,bi,eq,di} = 0. Since Fy must intersect with Cy, we can put Fy = X5 U {cg, 2}
with ¢y € X3 — {c1} and @ & {ag,b1,¢1,d1}. Now, By N Dy # 0 and Ey N By # 0, while
(D1UBy)N(X5U{c2}) = 0. Hence, 2 € Dy N By = {d1}. This is a contradiction.

Subcase 5.2.  V(Fy) N Xazq5 = 0.
In this case, every edge in Fas45 contains some vertex of V(Fp). Let Ag € Fy and By € Fs.
Since |[Ag— X1| = 1 and |Bg— X3| = 2, (4g— X1)U(Bg— X3) does not cover Fizy5. So, we
may assume that there exists an edge €1 = X3 U{ay,b1} € F3 with a; € Xy and b, € Xs.
Next, the set (A9 — X1) U {a1,b1} does not cover Fiaus. So, we may assume that there
exists an edge Dy = Xy U {ag,c1} € Fy with az € X1 — {a1} and ¢y € X3.

The set {ay,by,c1} does not cover Fia35. So, we may assume that there exists an edge
FEy = XsU{cg, 2} € Fs with ¢3 € X3 — {¢1} and @ & {ay,by,¢1}. Now, Fy must intersect
with Ag and Dy, while (Ag U D) N (X5 U {c2}) = 0. Hence, x € Ao N Dy = {az}, i.e,
x = ay. In particular, every edge I € Fs(aibic1) contains as.

Then, the set {a1, ag, b1, c1} does not cover F, but covers Figss. So, there exists an edge
Dy € Fysuch that Don{ay, ag,by,¢1} = 0. Since Dy must intersect with Ay, Cy and Fy, Dy
contains a vertex of Ag and the vertex cz. Let Dy = XqU{d',c2} where ¢’ € Ag —{a1,a2}
and ¢z € X3 —{c1}. This argument implies that every edge D € Fy(ajazby) contains cz.

10



Next, consider the set {ay,as,by,c2}, which does not cover F. This set covers Fios,
and also by the result in the last paragraph, covers Fy. So, there exists an edge Fy € Fj
such that Fy N {ay,as,by,c2} = 0. This edge Fy must contain the vertices ¢’ and ¢y.

Now, we can easily see that for every edge in F' € Fy5(ayb;) must contain one of the
vertices ¢; and ¢y. This implies that F is covered by {ay, by, ¢, 2}, a contradiction. [

References

[1] P. Erdés, C. Ko and R. Rado. Intersection theorems for systems of finite sets. Quart.
J. Math. Oxford (2), 12:313-320, 1961.

[2] P.Frankl. On intersecting families of finite sets. Bull. Austral. Math. Soc., 21:363-372,
1980.

[3] P. Frankl, K. Ota, N. Tokushige. Uniform intersecting families with covering number
four. preprint, 1992.

[4] P. Frankl, K. Ota, N. Tokushige. Covers in uniform intersecting families and a coun-
terexample to a conjecture of Lovasz. preprint, 1992.

[5] Z. Fiiredi. Matchings and covers in hypergraphs. Graphs and Comb., 4:115-206, 1988.

[6] A. Gyarfas. Partition covers and blocking sets in hypergraphs (in Hungarian). MTA
SZTAKI Tanulmanyok, 71: 1977.

[7] A.J.W. Hilton and E.C.Milner. Some intersection theorems for systems of finite sets.
Quart. J. Math. Ozford (2), 18:369-384, 1967.

11



