A MULTIPLY INTERSECTING ERDŐS-KO-RADO THEOREM - THE PRINCIPAL CASE

NORIHIDE TOKUSHIGE

Abstract

Let $m(n, k, r, t)$ be the maximum size of $\mathscr{F} \subset\binom{[n]}{k}$ satisfying $\left|F_{1} \cap \cdots \cap F_{r}\right| \geq t$ for all $F_{1}, \ldots, F_{r} \in \mathscr{F}$. We prove that for every $p \in(0,1)$ there is some r_{0} such that, for all $r>r_{0}$ and all t with $1 \leq t \leq\left\lfloor\left(p^{1-r}-p\right) /(1-p)\right\rfloor-r$, there exists n_{0} so that if $n>n_{0}$ and $p=k / n$, then $m(n, k, r, t)=\binom{n-t}{k-t}$. The upper bound for t is tight for fixed p and r.

1. Introduction

Let n, k, r and t be positive integers, and let $[n]=\{1,2, \ldots, n\}$. A family $\mathscr{G} \subset 2^{[n]}$ is called r-wise t-intersecting if $\left|G_{1} \cap \cdots \cap G_{r}\right| \geq t$ holds for all $G_{1}, \ldots, G_{r} \in \mathscr{G}$. Let us define a typical r-wise t-intersecting family $\mathscr{G}_{i}(n, r, t)$ and its k-uniform subfamily $\mathscr{F}_{i}(n, k, r, t)$, where $0 \leq i \leq\left\lfloor\frac{n-t}{r}\right\rfloor$, as follows:

$$
\begin{aligned}
\mathscr{G}_{i}(n, r, t) & =\{G \subset[n]:|G \cap[t+r i]| \geq t+(r-1) i\}, \\
\mathscr{F}_{i}(n, k, r, t) & =\mathscr{G}_{i}(n, r, t) \cap\binom{[n]}{k} .
\end{aligned}
$$

Two families $\mathscr{G}, \mathscr{G}^{\prime} \subset 2^{[n]}$ are said to be isomorphic, and denoted by $\mathscr{G} \cong \mathscr{G}^{\prime}$, if there exists a vertex permutation τ on $[n]$ such that $\mathscr{G}^{\prime}=\{\{\tau(g): g \in G\}: G \in \mathscr{G}\}$.

Let $m(n, k, r, t)$ be the maximum size of k-uniform r-wise t-intersecting families on n vertices. To determine $m(n, k, r, t)$ is one of the oldest problems in extremal set theory, which is still widely open. The case $r=2$ was observed by Erdős, Ko and Rado [6], Frankl [9], Wilson [29], and then $m(n, k, 2, t)=\max _{i}\left|\mathscr{F}_{i}(n, k, 2, t)\right|$ was finally proved by Ahlswede and Khachatrian [2]. Frankl [8] showed $m(n, k, r, 1)=\left|\mathscr{F}_{0}(n, k, r, 1)\right|$ if $(r-$ $1) n \geq r k$. Partial results for the cases $r \geq 3$ and $t \geq 2$ are found in $[12,14,22,23,24,25$, 26, 28]. All known results suggest

$$
m(n, k, r, t)=\max _{i}\left|\mathscr{F}_{i}(n, k, r, t)\right| .
$$

In this paper, we will consider the principal case, namely, the case when the maximum is attained by $\mathscr{F}_{0}(n, k, r, t)$. For fixed $p=k / n \in(0,1), r$ and t, a computation shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\mathscr{F}_{1}(n, k, r, t)\right| /\left|\mathscr{F}_{0}(n, k, r, t)\right| \leq 1 \text { iff } 1 \leq t \leq\left(p^{1-r}-p\right) /(1-p)-r=: t_{p, r} \tag{1}
\end{equation*}
$$

To consider the interval for t including $\left\{1,2, \ldots,\left\lfloor t_{p, r}\right\rfloor\right\}$ let us define $T_{p, r}\left(>t_{p, r}\right)$ by

$$
\begin{equation*}
T_{p, r}=p^{1-r} /(1-p)-\log r . \tag{2}
\end{equation*}
$$

Date: March 19, 2009, 11:01am.
2000 Mathematics Subject Classification. Primary: 05D05 Secondary: 05C65.
Key words and phrases. Erdős-Ko-Rado Theorem; intersecting family; p-weight.
The author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027 and 20340022.

Then we can state a generalized Erdős-Ko-Rado theorem for r-wise t-intersecting families as follows.

Theorem 1. For all $p \in(0,1)$ there exists r_{0} such that the following holds. For all $r>r_{0}$ and all t with $1 \leq t \leq T_{p, r}$, there exist positive constants ε, n_{0} such that

$$
m(n, k, r, t)=\max \left\{\left|\mathscr{F}_{0}(n, k, r, t)\right|,\left|\mathscr{F}_{1}(n, k, r, t)\right|\right\}
$$

holds for all $n>n_{0}$ and k with $\left|\frac{k}{n}-p\right|<\varepsilon$. Moreover, $\mathscr{F}_{0}(n, k, r, t)$ and $\mathscr{F}_{1}(n, k, r, t)$ are the only optimal families (up to isomorphism).

Now we introduce the p-weight version of the Erdős-Ko-Rado theorem. Throughout this paper, p and $q=1-p$ denote positive real numbers. For $X \subset[n]$ and a family $\mathscr{G} \subset 2^{X}$ we define the p-weight of \mathscr{G}, denoted by $w_{p}(\mathscr{G}: X)$, as follows:

$$
w_{p}(\mathscr{G}: X)=\sum_{G \in \mathscr{G}} p^{|G|} q^{|X|-|G|}=\sum_{i=0}^{|X|}\left|\mathscr{G} \cap\binom{X}{i}\right| p^{i} q^{|X|-i} .
$$

We simply write $w_{p}(\mathscr{G})$ for the case $X=[n]$; for example, we have $w_{p}\left(2^{[n]}\right)=1$ and $w_{p}\left(\mathscr{G}_{0}(n, r, t)\right)=p^{t}$. A direct computation shows that the p-weight of $\mathscr{G}_{i}(n, r, t)$ is independent of n for $n \geq t+r i$. So let

$$
g_{i}(p, r, t)=w_{p}\left(\mathscr{G}_{i}(n, r, t)\right) .
$$

Let $w(n, p, r, t)$ be the maximum p-weight of r-wise t-intersecting families on n vertices. It might be natural to expect

$$
w(n, p, r, t)=\max _{i} w_{p}\left(\mathscr{G}_{i}(n, r, t)\right)=\max _{i} g_{i}(p, r, t) .
$$

Ahlswede and Khachatrian proved that this is true for $r=2$ in [3] (cf. [5, 7, 22]). This includes the Katona theorem [18] about $w(n, 1 / 2,2, t)$. It is shown in [13] that

$$
\begin{equation*}
w(n, p, r, 1)=p \text { for } p \leq(r-1) / r . \tag{3}
\end{equation*}
$$

We can check that $g_{0}(p, r, t) \geq g_{1}(p, r, t)$ iff $1 \leq t \leq t_{p, r}$ cf. (1). In [11], Frankl considered the case $p=1 / 2$ and proved $w(n, p, r, t)=p^{t}$ for $1 \leq t \leq t_{p, r}=2^{r}-r-1$. This result was extended for the case $|p-1 / 2|<\varepsilon$ in [26]. In this paper we will generalize these results from $p \approx 1 / 2$ to any given $p \in(0,1)$ as follows.

Theorem 2. For all $p \in(0,1)$ there exists r_{0} such that for all $r>r_{0}$, all t with $1 \leq t \leq T_{p, r}$, and all $n \geq t+r$, we have

$$
w(n, p, r, t)=\max \left\{g_{0}(p, r, t), g_{1}(p, r, t)\right\} .
$$

Moreover, $\mathscr{G}_{0}(n, r, t)$ and $\mathscr{G}_{1}(n, r, t)$ are the only optimal families (up to isomorphism).
We will deduce Theorems 1 and 2 from slightly stronger, stability type results (cf. [16, 21]). To state our main results let us define some collections of families as follows. For
$0 \leq i \leq\lfloor(n-t) / r\rfloor$ (but we will actually need the case $i=0,1$ only), let

$$
\begin{aligned}
\mathbf{G}(n, r, t) & =\left\{\mathscr{G} \subset 2^{[n]}: \mathscr{G} \text { is } r \text {-wise } t \text {-intersecting }\right\}, \\
\mathbf{G}_{i}(n, r, t) & =\left\{\mathscr{G} \subset 2^{[n]}: \mathscr{G} \subset \mathscr{G}^{\prime} \text { for some } \mathscr{G}^{\prime} \cong \mathscr{G}_{i}(n, r, t)\right\}, \\
\mathbf{X}^{i}(n, r, t) & =\mathbf{G}(n, r, t) \backslash \bigcup_{0 \leq j \leq i} \mathbf{G}_{j}(n, r, t), \\
\mathbf{Y}^{i}(n, k, r, t) & =\left\{\mathscr{F} \subset\binom{n n]}{k}: \mathscr{F} \in \mathbf{X}^{i}(n, r, t)\right\},
\end{aligned}
$$

and finally let us define

$$
\begin{aligned}
m^{i}(n, k, r, t) & =\max \left\{|\mathscr{F}|: \mathscr{F} \in \mathbf{Y}^{i}(n, k, r, t)\right\}, \\
w^{i}(n, p, r, t) & =\max \left\{w_{p}(\mathscr{G}): \mathscr{G} \in \mathbf{X}^{i}(n, r, t)\right\} .
\end{aligned}
$$

Ahlswede and Khachatrian [1] determined $m^{0}(n, k, 2, t)$ completely, extending the earlier results by Hilton and Milner [17] and Frankl [10]. Brace and Daykin [4] determined $w^{0}(n, 1 / 2, r, 1)$ and Frankl [11] determined $w^{0}(n, 1 / 2, r, t)$ for $r \geq 5$ and $1 \leq t \leq 2^{r}-r-1$. More partial results for $m^{1}(n, k, r, t)$ with $k / n \approx 1 / 2$ and $w^{1}(n, p, r, t)$ with $p \approx 1 / 2$ are found in [15, 26, 27]. Our main results are the following.

Theorem 3. For all $p \in(0,1)$ there exists r_{0} such that the following holds. For all $r>r_{0}$ and all t with $1 \leq t \leq T_{p, r}$, there exist positive constants $\gamma, \varepsilon, n_{0}$ such that

$$
\left.\left.m^{1}(n, k, r, t)<(1-\gamma) \max \left\{\mid \mathscr{F}_{0}(n, k, r, t)\right)|,| \mathscr{F}_{1}(n, k, r, t)\right) \mid\right\}
$$

holds for all $n>n_{0}$ and k with $\left|\frac{k}{n}-p\right|<\varepsilon$.
Theorem 4. For all $p \in(0,1)$ there exists r_{0} such that the following holds. For all $r>r_{0}$ and all t with $1 \leq t \leq T_{p, r}$, there exist there exist positive constants γ, ε such that

$$
\begin{equation*}
w^{1}(n, \tilde{p}, r, t)<(1-\gamma) \max \left\{g_{0}(\tilde{p}, r, t), g_{1}(\tilde{p}, r, t)\right\} \tag{4}
\end{equation*}
$$

holds for all n with $n \geq t+r$ and all \tilde{p} with $|\tilde{p}-p|<\varepsilon$.
The condition $r>r_{0}$ is necessary in the above theorems. To see this, we give an example which violates (4). Let $r<1 /(1-p)$, or equivalently, $p>1-\frac{1}{r}$. Consider a family $\mathscr{G}=\left\{G \subset[n]:|G| \geq\left(1-\frac{1}{r}\right) n+\frac{t}{r}\right\}$. Then one can check that $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$. As the binomial distribution $B(n, p)$ is concentrated around $p n$, we see that $\lim _{n \rightarrow \infty} w_{p}(\mathscr{G})=1$. Thus, (4) fails even if $\gamma=0$.

Theorem 3 and Theorem 4 immediately imply Theorem 1 and Theorem 2, respectively. We first prove Theorem 4 in Section 3. Our proof technique is largely based on [11, 26]. Then we deduce Theorem 3 from Theorem 4 in Section 4. We prepare some tools in Section 2.

In our proof of the theorems, we will make no effort to reduce the value of r_{0}. Instead, we try to give a simpler proof assuming r_{0} large enough. Our proof admits to replace $\log r$ in (2) with any function $f(r)$ satisfying $f(r) \rightarrow+\infty$ as $r \rightarrow+\infty$.

2. Tools

2.1. Some inequalities. Let $p, q \in(0,1)$ with $p+q=1$. We consider the situation that r is large enough for fixed p, and we always assume that $q r>1$. In this case, the equation $q x^{r}-x+p=0$ has unique root $\alpha_{r, p}$ in the interval $(p, 1)$. In fact, letting $f(x)=q x^{r}-x+p$,
one can check that $f(0)=p>0, f(1)=0$. Also $f^{\prime}(x)=q r x^{r-1}-1$ has unique real zero $x=(q r)^{-1 /(r-1)} \in(0,1)$. We sometimes write α_{r} for $\alpha_{r, p}$ omitting p if this makes no confusion.

Lemma 1 ([27]). Let p, r, t_{0}, c be fixed constants. Suppose that $w\left(n, p, r, t_{0}\right) \leq c$ holds for all $n \geq t_{0}$. Then we have $w(n, p, r, t) \leq c \alpha_{r, p}^{t-t_{0}}$ for all $t \geq t_{0}$ and $n \geq t$. In particular, we always have $w(n, p, r, t) \leq \alpha_{r, p}^{t}$.

Lemma 2. $\mathbf{X}^{0}(n, r, t) \subset \mathbf{X}^{0}(n, r-1, t+1)$ and $w^{0}(n, p, r, t) \leq w^{0}(n, p, r-1, t+1)$.
Proof. Let $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$. If \mathscr{G} is not $(r-1)$-wise $(t+1)$-intersecting, then we can find $G_{1}, \ldots, G_{r-1} \in \mathscr{G}$ such that $\left|G_{1} \cap \cdots \cap G_{r-1}\right|=t$. But \mathscr{G} is r-wise t-intersecting and so every $G \in \mathscr{G}$ must contain $G_{1} \cap \cdots \cap G_{r-1}$. This means $\mathscr{G} \notin \mathbf{X}^{0}(n, r, t)$, a contradiction. Thus, $\mathscr{G} \in \mathbf{G}(n, r-1, t+1)$. If \mathscr{G} fixes $t+1$ vertices, then $\mathscr{G} \notin \mathbf{X}^{0}(n, r, t)$. Therefore we have $\mathscr{G} \in \mathbf{X}^{0}(n, r-1, t+1)$.

Lemma 3. For any i with $0 \leq i \leq\lfloor(n-t) / r\rfloor$, we have $w^{i}(n+1, p, r, t) \geq w^{i}(n, p, r, t)$.
Proof. Choose $\mathscr{G} \in \mathbf{X}^{i}(n, r, t)$ with $w_{p}(\mathscr{G})=w^{i}(n, p, r, t)$. Then $\mathscr{G}^{\prime}:=\mathscr{G} \cup\{G \cup\{n+1\}$: $G \in \mathscr{G}\} \in \mathbf{X}^{i}(n+1, r, t)$ and $w_{p}\left(\mathscr{G}^{\prime}:[n+1]\right)=w_{p}(\mathscr{G}:[n])(q+p)=w^{i}(n, p, r, t)$, which means $w^{i}(n+1, p, r, t) \geq w^{i}(n, p, r, t)$.

For a positive integer i and a real $p \in(0,1)$, let

$$
\begin{equation*}
c_{i}:=c_{i}(p)=-i(p / q) \log p . \tag{5}
\end{equation*}
$$

Lemma 4. For any positive integer i and any real $p \in(0,1)$ there exists $r_{1} \in \mathbb{N}$ such that $\alpha_{r}^{y+i}<p^{y}$ holds for all $r \geq r_{1}$ and all $y=d p^{-r}$ with $0<d \leq c_{i}$.

Proof. Set $\alpha=\alpha_{r}$ and $\beta=1 /(y+i)$. We want to show that $\alpha^{y+i}<p^{y}$, that is, $\alpha<p^{1-i \beta}$. Let $f(x)=q x^{r}-x+p$. Since $f(x) \geq 0$ for $0<x \leq \alpha$ and $f(x)<0$ for $\alpha<x<1$, it suffices to show that $f\left(p^{1-i \beta}\right)<0$, that is,

$$
\begin{equation*}
(q / p) p^{-i \beta r}<p^{-r}\left(p^{-i \beta}-1\right) . \tag{6}
\end{equation*}
$$

Noting that $p^{-i \beta}=\exp \left(\log p^{-i \beta}\right)>1+\log \left(p^{-i \beta}\right)=1-i \beta \log p$, the RHS of (6) is more than

$$
p^{-r}(-i \beta \log p)=\frac{-i p^{-r} \log p}{y+i}=\frac{-i p^{-r} \log p}{d p^{-r}+i} \rightarrow \frac{-i \log p}{d} \text { as } r \rightarrow \infty .
$$

On the other hand, the LHS of (6) is

$$
(q / p)\left(p^{-i}\right)^{\frac{r}{y+i}}=(q / p)\left(p^{-i}\right)^{\frac{r}{d p^{-r}+i}} \rightarrow q / p \text { as } r \rightarrow \infty .
$$

Thus (6) holds for sufficiently large r if $q / p \leq-i(\log p) / d$, that is, $d \leq c_{i}$.
Lemma 5. For all $p \in(0,1)$ there exist $r_{1} \in \mathbb{N}$ and $\mu \in(0,1)$ such that the following holds. For all $r \geq r_{1}+1$ and all t with $1 \leq t \leq\left\lfloor c_{1} p\left(p^{-r}-p^{-r_{1}}\right) / q\right\rfloor$, where c_{1} is defined by (5), and all $n \geq t+r$, it follows $w^{0}(n, p, r, t) \leq \mu p^{t}$.

Proof. Choose r_{1} from Lemma 4 for $i=1$. For $r \geq r_{1}+1$ define a_{r} by

$$
\begin{equation*}
a_{r}=c_{1} \sum_{j=r_{1}}^{r-1} p^{-j}=c_{1} p\left(p^{-r}-p^{-r_{1}}\right) / q . \tag{7}
\end{equation*}
$$

Then we have $a_{r_{1}+1}=c_{1} p^{-r_{1}}$ and $a_{r+1}-a_{r}=c_{1} p^{-r}$ for $r \geq r_{1}+1$.
Let $r \geq r_{1}+1$. We will show $w^{0}(n, p, r, t) \leq \mu p^{t}$ for all t with $1 \leq t \leq\left\lfloor a_{r}\right\rfloor$, and $n \geq r+t$, by induction on r. For the base case $r=r_{1}+1$, by Lemmas 2 and 1 , we have

$$
w^{0}\left(n, p, r_{1}+1, t\right) \leq w^{0}\left(n, p, r_{1}, t+1\right) \leq \alpha_{r_{1}}^{t+1}
$$

Then using Lemma 4 for $y=t$ and $i=1$, we have $\alpha_{r_{1}}^{t+1}<p^{t}$ for $t \leq c_{1} p^{-r_{1}}=a_{r_{1}+1}$. Let $\mu=\max \left\{\alpha_{r_{1}}\left(\alpha_{r_{1}} / p\right)^{t}: 1 \leq t \leq\left\lfloor a_{r_{1}+1}\right\rfloor\right\}$. The maximum is attained when $t=\left\lfloor a_{r_{1}+1}\right\rfloor$. This $\mu=\mu(p) \in(0,1)$ satisfies $w^{0}\left(n, p, r_{1}+1, t\right) \leq \mu p^{t}$ for all $1 \leq t \leq\left\lfloor a_{r_{1}+1}\right\rfloor$.

For the induction step, Lemmas 2 and 1 imply that

$$
w^{0}(n, p, r+1, t) \leq w^{0}(n, p, r, t+1) \leq w^{0}\left(n, p, r,\left\lfloor a_{r}\right\rfloor\right) \alpha_{r}^{t+1-\left\lfloor a_{r}\right\rfloor} .
$$

Using the induction hypothesis $w^{0}\left(n, p, r,\left\lfloor a_{r}\right\rfloor\right) \leq \mu p^{\left\lfloor a_{r}\right\rfloor}$, we have

$$
w^{0}(n, p, r+1, t) \leq \mu p^{\left\lfloor a_{r}\right\rfloor} \alpha_{r}^{t+1-\left\lfloor a_{r}\right\rfloor} \leq \mu p^{a_{r}} \alpha_{r}^{t+1-a_{r}} .
$$

The RHS is at most μp^{t} iff $\alpha_{r}^{\left(t-a_{r}\right)+1} \leq p^{t-a_{r}}$. Applying Lemma 4 for $y=t-a_{r}$ and $i=1$, this is true if $t-a_{r} \leq c_{1} p^{-r}$, that is, $t \leq a_{r}+c_{1} p^{-r}=a_{r+1}$.
2.2. Shifting. For integers $1 \leq i<j \leq n$ and a family $\mathscr{G} \subset 2^{[n]}$, we define the (i, j)-shift $\sigma_{i j}$ as follows:

$$
\sigma_{i j}(\mathscr{G})=\left\{\sigma_{i j}(G): G \in \mathscr{G}\right\}
$$

where

$$
\sigma_{i j}(G)= \begin{cases}(G-\{j\}) \cup\{i\} & \text { if } i \notin G, j \in G,(G-\{j\}) \cup\{i\} \notin \mathscr{G}, \\ G & \text { otherwise. }\end{cases}
$$

A family $\mathscr{G} \subset 2^{[n]}$ is called shifted if $\sigma_{i j}(\mathscr{G})=\mathscr{G}$ for all $1 \leq i<j \leq n$, and \mathscr{G} is called tame if it is shifted and $\bigcap \mathscr{G}=\emptyset$. If \mathscr{G} is r-wise t-intersecting, then so is $\sigma_{i j}(\mathscr{G})$. We notice that $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ does not necessarily imply $\sigma_{i j}(\mathscr{G}) \in \mathbf{X}^{0}(n, r, t)$, because $\sigma_{i j}(\mathscr{G})$ may fix t vertices.

Lemma 6. If $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ is p-weight maximum, then we can find a tame $\mathscr{G}^{\prime} \in \mathbf{X}^{0}(n, r, t)$ with $w_{p}\left(\mathscr{G}^{\prime}\right)=w_{p}(\mathscr{G})$.

Proof. If $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ then $\mathscr{G} \in \mathbf{X}^{0}(n, r-1, t+1)$ by Lemma 2. We apply all possible shifting operations to \mathscr{G} to get a shifted family $\mathscr{G}^{\prime} \in \mathbf{G}(n, r, t) \subset \mathbf{G}(n, r-1, t+1)$. Since each shifting operation preserves the p-weight, we have $w_{p}(\mathscr{G})=w_{p}\left(\mathscr{G}^{\prime}\right)$.

We have to show that $\cap \mathscr{G}^{\prime}=\emptyset$. Otherwise we may assume that $1 \in \cap \mathscr{G}^{\prime}$ and $H=$ $[2, n] \notin \mathscr{G}^{\prime}$. Since \mathscr{G}^{\prime} is p-weight maximum we can find $G_{1}, \ldots, G_{r-1} \in \mathscr{G}^{\prime}$ such that $\mid G_{1} \cap$ $\cdots \cap G_{r-1} \cap H \mid<t$. Then we have $\left|G_{1} \cap \cdots \cap G_{r-1}\right|<t+1$, which is a contradiction.

A family $\mathscr{G} \subset 2^{[n]}$ is called a filter if it is closed upwards: if $G \in \mathscr{G}$ and $G \subset G^{\prime}$ then $G^{\prime} \in \mathscr{G}$. If \mathscr{G} is a filter, then so is $\sigma_{i j}(\mathscr{G})$. We also notice that if $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ is p-weight maximum then \mathscr{G} is necessarily a filter.

3. Proof of Theorem 4

We start with the following simple observation.
Claim 1. Let $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$ be fixed, and let $f(p):=\max \left\{g_{0}(p, r, t), g_{1}(p, r, t)\right\}$. If $w_{p}(\mathscr{G})<$ $f(p)$ for some p, then there exist $\gamma, \varepsilon>0$ such that $w_{\tilde{p}}(\mathscr{G})<(1-\gamma) f(\tilde{p})$ for all $|\tilde{p}-p|<\varepsilon$.

This is because both $w_{p}(\mathscr{G})$ and $f(p)$ are continuous functions of variable p. So, to prove Theorem 4, it is enough to show that $w_{p}(\mathscr{G})<f(p)$ for given p and $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$ provided $r \geq r_{0}, 1 \leq t \leq T_{p, r}$.

The actual proof goes as follows. Let $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$ be p-weight maximum. Choose a tame $\mathscr{G}^{*} \in \mathbf{X}^{0}(n, r, t)$ with $w_{p}\left(\mathscr{G}^{*}\right)=w_{p}(\mathscr{G})$ by Lemma 6 . Then we will show the following.
Case 1. If $\mathscr{G}^{*} \subset \mathscr{G}_{1}(n, r, t)$ then $w_{p}\left(\mathscr{G}^{*}\right)<(1-\gamma) g_{1}(p, r, t)$.
Case 2. If $\mathscr{G}^{*} \not \subset \mathscr{G}_{1}(n, r, t)$ then $w_{p}\left(\mathscr{G}^{*}\right)<(1-\gamma) g_{0}(p, r, t)$.
In the proof, after having p, r and t, we may assume that n is large enough by Lemma 3 .
For Case 1, we show the following.
Lemma 7. For all $p \in(0,1), r \geq 2+1 / q$, t with $1 \leq t \leq T_{p, r+1}$, and all $n \geq t+r$, the following holds. Let $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$ be p-weight maximum and let $\mathscr{G}^{*} \in \mathbf{X}^{0}(n, r, t)$ be a tame family obtained by shifting from \mathscr{G}. If $\mathscr{G}^{*} \subset \mathscr{G}_{1}(n, r, t)$ then $w_{p}\left(\mathscr{G}^{*}\right) \leq(1-\gamma) g_{1}(p, r, t)$, where $\gamma=\frac{q}{(r-2)}\left(\frac{t+r}{p}+\frac{1}{q}\right)^{-1}$.
Proof of Lemma 7. Let p, r, t, n be given. Set $\mathscr{G}_{1}=\mathscr{G}_{1}(n, r, t)$. Let $\mathscr{G}^{\prime} \in \mathbf{X}^{1}(n, r, t)$ be $p-$ weight maximum. Note that \mathscr{G}^{\prime} is not necessarily shifted. By Lemma 6 we can find a tame $\mathscr{G}^{*} \in \mathbf{X}^{0}(n, r, t)$ in a sequence of shifting $\mathscr{G}^{\prime} \rightarrow \cdots \rightarrow \mathscr{G}^{*}$ with $w_{p}\left(\mathscr{G}^{\prime}\right)=\cdots=$ $w_{p}\left(\mathscr{G}^{*}\right)$. Suppose that $\mathscr{G}^{*} \subset \mathscr{G}_{1}$. Then we find some $\mathscr{G} \in \mathbf{G}(n, r, t)$ in the sequence such that $\mathscr{G} \not \subset \mathscr{G}_{1}$ and $\sigma_{x y}(\mathscr{G}) \subset \mathscr{G}_{1}$, where we may assume that $x=t+r, y=x+1$. We note that $|[x] \cap G| \geq x-2$ for all $G \in \mathscr{G}$. Moreover, if $|[x] \cap G|=x-2$ then $G \cap\{x, y\}=\{y\}$ and $(G-\{y\}) \cup\{x\} \notin \mathscr{G}$.

For $i \in[x]$ set $\mathscr{G}(i)=\{G \in \mathscr{G}:[y] \backslash G=\{i\}\}$, and for $j \in[x-1]$ and $z \in\{x, y\}$ let $\mathscr{G}_{z}(j)=\{G \in \mathscr{G}:[y] \backslash G=\{j, z\}\}, \mathscr{H}_{z}(j)=\left\{G \backslash[y]: G \in \mathscr{G}_{z}(j)\right\}$. Since $\sigma_{x y}(\mathscr{G}) \subset \mathscr{G}_{1}$ we have $\mathscr{H}_{x}(j) \cap \mathscr{H}_{y}(j)=\emptyset$ and so $w_{p}\left(\mathscr{G}_{x}(j)\right)+w_{p}\left(\mathscr{G}_{y}(j)\right) \leq p^{x-1} q^{2}$. Set $\mathscr{G}_{\emptyset}=\{G \in \mathscr{G}:[x] \subset$ $G\}, \mathscr{G}_{x y}=\{G \in \mathscr{G}: G \cap[y]=[x-1]\}$, and let $e=\min _{i \in[x]} w_{p}(\mathscr{G}(i))$. Then we have

$$
\begin{align*}
w_{p}(\mathscr{G}) & =\sum_{i \in[x]} w_{p}(\mathscr{G}(i))+\sum_{j \in[x-1]}\left(w_{p}\left(\mathscr{G}_{x}(j)\right)+w_{p}\left(\mathscr{G}_{y}(j)\right)\right)+w_{p}\left(\mathscr{G}_{\emptyset}\right)+w_{p}\left(\mathscr{G}_{x y}\right) \tag{8}\\
& \leq e+(x-1) p^{x} q+(x-1) p^{x-1} q^{2}+p^{x}+p^{x-1} q^{2}=e+(\eta-1) p^{x} q, \tag{9}
\end{align*}
$$

where $\eta=\frac{x}{p}+\frac{1}{q}$. Note that $e \leq p^{x} q$, and (9) coincides with $w_{p}\left(\mathscr{G}_{1}\right)=x p^{x-1} q+p^{x}=\eta p^{x} q$ iff $e=p^{x} q$. If there is some $j \in[x-1]$ such that $\mathscr{G}_{x}(j) \cup \mathscr{G}_{y}(j)=\emptyset$, then by (8) we get $w_{p}(\mathscr{G}) \leq w_{p}\left(\mathscr{G}_{1}\right)-p^{x-1} q^{2}=(1-q /(\eta p)) w_{p}\left(\mathscr{G}_{1}\right)=(1-(r-2) \gamma) w_{p}\left(\mathscr{G}_{1}\right)$, and we are done. Thus we may assume that

$$
\begin{equation*}
\mathscr{G}_{x}(j) \cup \mathscr{G}_{y}(j) \neq \emptyset \text { for all } j \in[x-1] . \tag{10}
\end{equation*}
$$

To prove $w_{p}(\mathscr{G}) \leq(1-\gamma) w_{p}\left(\mathscr{G}_{1}\right)$ by contradiction, let us assume that

$$
\begin{equation*}
w_{p}(\mathscr{G})>(1-\gamma) w_{p}\left(\mathscr{G}_{1}\right)=(1-\gamma) \eta p^{x} q \tag{11}
\end{equation*}
$$

By (9) and (11) we have $e>(1-\gamma \eta) p^{x} q$. This means, letting $\mathscr{H}(i)=\{G \backslash[y]: G \in \mathscr{G}(i)\}$ and $Y=[y+1, n]$, we have

$$
\begin{equation*}
w_{p}(\mathscr{H}(i): Y)>1-\gamma \eta \text { for all } i \in[x] . \tag{12}
\end{equation*}
$$

Since $\mathscr{G} \not \subset \mathscr{G}_{1}$, both $\bigcup_{j \in[x-1]} \mathscr{G}_{x}(j)$ and $\bigcup_{j \in[x-1]} \mathscr{G}_{y}(j)$ are non-empty. Using this with (10), we can choose $G \in \mathscr{G}_{x}(j)$ and $G^{\prime} \in \mathscr{G}_{y}\left(j^{\prime}\right)$ with $j \neq j^{\prime}$, say, $j=x-1, j^{\prime}=x-2$. Let $L=[r-2]$ and $\mathscr{H}^{*}=\bigcap_{\ell \in L} \mathscr{H}(\ell)$. Then by (12) we have

$$
\begin{equation*}
w_{p}\left(\mathscr{H}^{*}: Y\right)>1-(r-2) \gamma \eta . \tag{13}
\end{equation*}
$$

If $\mathscr{H}^{*} \subset 2^{Y}$ is not $(r-2)$-wise 1-intersecting, then we can find $H_{1}, \ldots, H_{r-2} \in \mathscr{H}^{*}$ such that $H_{1} \cap \cdots \cap H_{r-2}=\emptyset$. Setting $G_{\ell}=([y] \backslash\{\ell\}) \cup H_{\ell} \in \mathscr{G}$ we have $\mid G_{1} \cap \cdots \cap G_{r-2} \cap$ $G \cap G^{\prime} \mid=t-1$, which contradicts the r-wise t-intersecting property of \mathscr{G}. Thus \mathscr{H}^{*} is $(r-2)$-wise 1-intersecting and $w_{p}\left(\mathscr{H}^{*}: Y\right) \leq p$ by (3), where we need $(r-2) q \geq 1$. But this contradicts (13) because we chose γ so that $p=1-(r-2) \gamma \eta$. This completes the proof of Lemma 7.

Next we consider Case 2 . Rename \mathscr{G}^{*} by \mathscr{G}. Here, to make the proof notationally simpler, we consider the case $r+1$ instead of the case r. Then, it suffices to show the following lemma for Case 2.

Lemma 8. For all $p \in(0,1)$ there exists r_{0} such that the following holds. For all $r>r_{0}$, all t with $1 \leq t \leq T_{p, r+1}$, there exists $\gamma \in(0,1)$ such that for all $n \geq t+(r+1)$ and all tame $\mathscr{G} \in \mathbf{X}^{0}(n, r+1, t)$ with $\mathscr{G} \not \subset \mathscr{G}_{1}(n, r+1, t)$, it follows that $w_{p}(\mathscr{G})<(1-\gamma) p^{t}$.
Proof of Lemma 8. Let $p \in(0,1)$ be given. We choose $r_{0}=r_{0}(p)$ sufficiently large, which will be specified in the proof. Then, let $r>r_{0}$ and $1 \leq t \leq T_{p, r+1}$ be given. We choose $\gamma=\gamma(p, r, t) \in(0,1)$ close enough to 1 , and the closeness will be specified in the proof. Finally let $\mathscr{G} \in \mathbf{X}^{0}(n, r+1, t)$ be given with $\mathscr{G} \not \subset \mathscr{G}_{1}(n, r+1, t)$, where $n \geq t+(r+1)$.

Let $t^{(i)}=\max \{j: \mathscr{G}$ is i-wise j-intersecting $\}$. We may assume that $t^{(r+1)}=t$ and \mathscr{G} is p-weight maximum among all tame $\mathscr{G} \in \mathbf{X}^{0}(n, r+1, t)$ with $\mathscr{G} \not \subset \mathscr{G}_{1}(n, r+1, t)$. Let $t^{(r)}=t+s$. We have $s \geq 1$ by Lemma 2. Choose r_{1} from Lemma 5. Using Lemma 1 with Lemma 5, we have

$$
w_{p}(\mathscr{G}) \leq w^{0}(n, p, r, t+s) \leq w^{0}\left(n, p, r,\left\lfloor a_{r}\right\rfloor\right) \alpha_{r}^{(t+s)-\left\lfloor a_{r}\right\rfloor} \leq \mu p^{a_{r}} \boldsymbol{\alpha}_{r}^{(t+s)-a_{r}},
$$

for some $\mu=\mu(p) \in(0,1)$, where a_{r} is defined in (7). We want to show the RHS is at most μp^{t}, or equivalently, $\alpha_{r}^{t-a_{r}+s} \leq p^{t-a_{r}}$. Choosing r sufficiently large, that is, $r>r_{1}$, this is true if $t-a_{r} \leq c_{s} p^{-r}$ by Lemma 4. Thus we get the desired inequality $w_{p}(\mathscr{G}) \leq \mu p^{t}$ if

$$
\begin{equation*}
(t \leq) T_{p, r+1} \leq c_{s} p^{-r}+a_{r} \tag{14}
\end{equation*}
$$

The LHS is $T_{p, r+1}=p^{-r} / q-\log r$, while the RHS is

$$
c_{s} p^{-r}+a_{r}=s c_{1} p^{-r}+a_{r}=c_{1} p^{-r}(s+p / q)-c_{1} p^{1-r_{1}} / q .
$$

We choose $r>r_{0} \gg r_{1}$ so that $-\log r<-c_{1} p^{1-r_{1}} / q=\left(p^{2-r_{1}} / q\right) \log p$. Then we have (14) if $p^{-r} / q \leq c_{1} p^{-r}(s+p / q)$, that is, $-p(\log p)(s+p / q) \geq 1$. This is true if

$$
\begin{equation*}
s \geq s_{0}:=(-p \log p)^{-1}-p / q . \tag{15}
\end{equation*}
$$

So we may assume that $1 \leq s<s_{0}$. After [11] let $h=\min \{i:|G \cap[t+i]| \geq t$ for all $G \in \mathscr{G}\}$. This is the minimum size of "holes" in $[t+h]$.

Claim 2. $1 \leq h \leq s\left(<s_{0}\right)$.
Proof. Since $\mathscr{G} \in \mathbf{X}^{0}(n, r+1, t)$, we have $h \geq 1$. By the definition of s and the shiftedness of \mathscr{G}, we have $G_{1}, \ldots, G_{r} \in \mathscr{G}$ such that $G_{1} \cap \cdots \cap G_{r}=[t+s]$. Then it follows from $t^{(r+1)}=t$ that $|[t+s] \cap G| \geq t$ for all $G \in \mathscr{G}$, which implies, $t+h \leq t+s$.

Let $b=t+h-1$ and let $T_{i}=[b+1-i, b]$ be the right-most i-set in $[b]$. For $A \subset[b]$ let

$$
\mathscr{G}(A)=\{G \cap[b+1, n]: G \in \mathscr{G},[b] \backslash G=A\} .
$$

Since \mathscr{G} is shifted, we have $\mathscr{G}(A) \subset \mathscr{G}\left(T_{i}\right)$ for all $A \in\binom{[b]}{i}$. Thus, for each $G \in \mathscr{G}$ with $|[b] \backslash G|=i$, we can find $G^{\prime} \in \mathscr{G}\left(T_{i}\right)$ such that $G=([b] \backslash G) \cup G^{\prime}$. By considering the weight of \mathscr{G} on $[b]$ and $[b+1, n]$ separately, we have

$$
\begin{equation*}
w_{p}(\mathscr{G}) \leq \sum_{i=0}^{h}\binom{b}{i} p^{b-i} q^{i} w_{p}\left(\mathscr{G}\left(T_{i}\right):[b+1, n]\right) . \tag{16}
\end{equation*}
$$

Claim 3. For $0 \leq i<h$ and $2 \leq j \leq r, \mathscr{G}\left(T_{i}\right)$ is j-wise $(i j+(r-j) h+1)$-intersecting.
Proof. Suppose that $\mathscr{G}\left(T_{i}\right)$ is not j-wise v-intersecting, where $v=i j+(r-j) h+1$. Then we can find $G_{1}, \ldots, G_{j} \in \mathscr{G}\left(T_{i}\right)$ such that $\left|G_{1} \cap \cdots \cap G_{j}\right|<v$. Since \mathscr{G} is a shifted filter, we may assume that $G_{1} \cap \cdots \cap G_{j}=[b+1, b+v-1]$. By shifting $\left(G_{\ell} \cup[b]\right) \backslash T_{i} \in \mathscr{G}$, we get $G_{\ell}^{\prime}:=\left(G_{\ell} \cup[b]\right) \backslash[b+1+(\ell-1) i, b+\ell i] \in \mathscr{G}$ for $1 \leq \ell \leq j$. Then, $G_{1}^{\prime} \cap \cdots \cap G_{j}^{\prime}=$ $[b] \cup[b+i j+1, b+v-1]$.

By the definition of h we have some $H \in \mathscr{G}$ such that $|H \cap[h+t-1]|=|H \cap[b]|=$ $t-1$ and due to the shiftedness of \mathscr{G} we may assume that $H=[n] \backslash[t, b]$. By shifting H, we get $G_{\ell}^{\prime}:=[n] \backslash[b+i j+1+(\ell-1-j) h, b+i j+(\ell-j) h] \in \mathscr{G}$ for $j<\ell \leq r$. Then, $G_{j+1}^{\prime} \cap \cdots \cap G_{r}^{\prime}=[n] \backslash[b+i j+1, b+v-1]$. Thus we have $G_{1}^{\prime} \cap \cdots \cap G_{r}^{\prime} \cap H=[t-1]$, which contradicts the $(r+1)$-wise t-intersecting property of \mathscr{G}.
Claim 4. If $\mathscr{G} \subset \mathscr{G}_{h}(n, r+1, t)$ then $w_{p}(\mathscr{G})<(1-\gamma) p^{t}$.
Proof. Let $1 \leq i \leq h$ and set $\mathscr{G}_{i}=\mathscr{G}_{i}(n, r+1, t)$. We are going to compare

$$
w_{p}\left(\mathscr{G}_{i} \backslash \mathscr{G}_{i-1}\right)=\left({ }_{i}^{t+(r+1)(i-1)}\right) p^{t+r i} q^{i}
$$

and

$$
w_{p}\left(\mathscr{G}_{i-1} \backslash \mathscr{G}_{i}\right)=\sum_{j=\max \{0, i-r\}}^{i-1}\binom{t+(r+1)(i-1)}{j} \sum_{\ell=i+1-j}^{r+1}\binom{r+1}{\ell} p^{t+(r+1) i-j-\ell} q^{j+\ell} .
$$

For the latter, by choosing $j=i-1$, we have

$$
\begin{aligned}
w_{p}\left(\mathscr{G}_{i-1} \backslash \mathscr{G}_{i}\right) & \geq\binom{ t+(r+1)(i-1)}{i-1} p^{t+r i-r} q^{i-1} \sum_{\ell=2}^{r+1}\binom{r+1}{\ell} p^{r+1-\ell} q^{+\ell} \\
& =\binom{t+(r+1)(i-1)}{i-1} p^{t+r i-r} q^{i-1}\left(1-p^{r+1}-(r+1) p^{r} q\right) .
\end{aligned}
$$

Thus,

$$
\frac{w_{p}\left(\mathscr{G}_{i-1} \backslash \mathscr{G}_{i}\right)}{w_{p}\left(\mathscr{G}_{i} \backslash \mathscr{G}_{i-1}\right)} \geq \frac{i}{t+r(i-1)}\left(p^{-r} q^{-1}-p q^{-1}-(r+1)\right)
$$

The RHS is more than 1 iff

$$
\begin{equation*}
t<i p^{-r} / q+r-(2 r+1) i-p / q . \tag{17}
\end{equation*}
$$

Using $t \leq T_{p, r+1}=p^{-r} / q-\log r$, we can verify (17) for $i \geq 2$ and r large enough, say, $p^{-r}>2 r h q$. Thus we have $\max \left\{w_{p}\left(\mathscr{G}_{0}\right), w_{p}\left(\mathscr{G}_{1}\right)\right\}>w_{p}\left(\mathscr{G}_{2}\right)>\cdots>w_{p}\left(\mathscr{G}_{h}\right)$.

Suppose that $\mathscr{G} \subset \mathscr{G}_{h}$. Since $\mathscr{G} \not \subset \mathscr{G}_{1}$ is an assumption of Lemma 8, we may assume that $h \geq 2$. Then we have $w_{p}(\mathscr{G}) \leq w_{p}\left(\mathscr{G}_{h}\right) \leq w_{p}\left(\mathscr{G}_{2}\right)$. A direct computation using $t \leq T_{p, r+1}<$ p^{-r} / q shows that $\lim _{r \rightarrow \infty} w_{p}\left(\mathscr{G}_{2}\right) \leq p^{t} / 2$. Thus, for sufficiently large r, we can find some $\gamma \in(0,1)$ satisfying $w_{p}(\mathscr{G})<(1-\gamma) p^{t}$.

So, we may assume that $\mathscr{G} \not \subset \mathscr{G}_{h}(n, r+1, t)$.
Claim 5. If $\mathscr{G} \not \subset \mathscr{G}_{h}(n, r+1, t)$ then $\mathscr{G}\left(T_{h}\right)$ is r-wise ($r h+2$)-intersecting.
Proof. Suppose that $\mathscr{G}\left(T_{h}\right)$ is not r-wise ($r h+2$)-intersecting. Then we can find $G_{1}, \ldots, G_{r} \in$ $\mathscr{G}\left(T_{h}\right)$ such that $G_{1} \cap \cdots \cap G_{r}=[b+1, b+r h+1]=[t+h, t+(r+1) h]$. By shifting $\left(G_{\ell} \cup[b]\right) \backslash T_{h} \in \mathscr{G}$ we get $G_{\ell}^{\prime}:=\left(G_{\ell} \cup[b]\right) \backslash[t+(\ell-1) h, t+\ell h-1] \in \mathscr{G}$ for $1 \leq \ell \leq r$. Then, $G_{1}^{\prime} \cap \cdots \cap G_{r}^{\prime}=[t-1] \cup[t+r h, t+(r+1) h]$. Since $\mathscr{G} \not \subset \mathscr{G}_{h}(n, r+1, t)$ we have $G_{r+1}^{\prime}:=[n] \backslash[t+r h, t+(r+1) h] \in \mathscr{G}$. Thus, we have $G_{1}^{\prime} \cap \cdots \cap G_{r+1}^{\prime}=[t-1]$, which contradicts the $(r+1)$-wise t-intersecting property of \mathscr{G}.

Let $0 \leq i<h$. By Claim 3, $\mathscr{G}\left(T_{i}\right)$ is $\left\lfloor\frac{r}{2}\right\rfloor$-wise u-intersecting, where $u=\left\lfloor\frac{r}{2}\right\rfloor i+\left\lceil\frac{r}{2}\right\rceil h+1$. By Lemma 5 we have $w_{p}\left(\mathscr{G}\left(T_{i}\right):[b+1, n]\right) \leq w^{0}\left(n-b, p,\left\lfloor\frac{r}{2}\right\rfloor, u\right) \leq p^{u}$ if $u \leq a_{\lfloor r / 2\rfloor}$. In fact, we can choose $r \geq r_{0}(p)$ so that $u \leq a_{\lfloor r / 2\rfloor}$, because $u \leq r h+1<r s_{0}+1$ (by Lemma 2) and $r s_{0}+1<a_{\lfloor r / 2\rfloor}$ (by (15), (7) and (5)). Using $t \leq T_{p, r+1}=p^{-r} / q-\log r$ and $\binom{b}{i}<$ $(t+h)^{i}<\left(t+s_{0}\right)^{i}<\left(p^{-r} / q\right)^{i}$ for $r>r_{0}(p)$, we have

$$
\begin{equation*}
\binom{b}{i} p^{b-i} q^{i} w_{p}\left(\mathscr{G}\left(T_{i}\right):[b+1, n]\right)<\left(p^{-r} / q\right)^{i} p^{b-i} q^{i} p^{u} \leq p^{t+\left(1+\frac{r}{2}\right)(h-i)}<p^{t+\frac{r}{2}} . \tag{18}
\end{equation*}
$$

By Claim 5, $\mathscr{G}\left(T_{h}\right)$ is r-wise $(r h+2)$-intersecting. Thus, by choosing r large enough so that $r h+2<a_{r}$, Lemma 5 gives

$$
\begin{equation*}
\binom{b}{h} p^{b-h} q^{h} w_{p}\left(\mathscr{G}\left(T_{h}\right):[b+1, n]\right)<\left(p^{-r} / q\right)^{h} p^{t-1} q^{h} p^{r h+2}=p^{t+1} . \tag{19}
\end{equation*}
$$

By (16), (18), (19) we have $w_{p}(\mathscr{G}) \leq h p^{t+\frac{r}{2}}+p^{t+1}=p^{t}\left(h p^{r / 2}+p\right)<(1-\gamma) p^{t}$ by choosing r sufficiently large so that $h p^{r / 2}<s_{0} p^{r / 2} \ll q$. This completes the proof of Lemma 8 and Theorem 4.

4. Proof of Theorem 3

Assume the negation of Theorem 3. Then the statement starts with

$$
\begin{equation*}
\underline{\exists p} \forall r_{0} \underline{\exists r} \exists t \forall \gamma \forall \varepsilon \forall n_{0} \underline{\exists} \underline{\exists} \underline{k} \cdots, \tag{20}
\end{equation*}
$$

where the underlines will indicate the choice of parameters described below. We will construct a counterexample to Theorem 4 using (20). Recall that Theorem 4 starts with

$$
\begin{equation*}
\forall p \underline{\exists r_{0}} \forall r \forall t \underline{\exists \gamma} \exists \varepsilon \cdots . \tag{21}
\end{equation*}
$$

First, assuming the negation of Theorem 3 , there exists some $p \in(0,1)$ (corresponding to the first underline in (20)) such that the rest of Theorem 3 does not hold. For this p, Theorem 4 provides some r_{0} (corresponding to the first underline in (21)) such that the rest
of Theorem 4 holds. With this r_{0}, the negation of Theorem 3 provides some $r>r_{0}$ and $1 \leq t \leq T_{r, p}$ (the second and third underlines in (20)) such that the rest of Theorem 3 does not hold. With this r and t, Theorem 4 provides some $\gamma_{0}=\gamma_{0}(p, r, t)$ and $\varepsilon_{0}=\varepsilon_{0}(p, r, t)$ such that

$$
\begin{equation*}
w^{1}(n, \tilde{p}, r, t)<\left(1-\gamma_{0}\right) f(\tilde{p}) \tag{22}
\end{equation*}
$$

holds for all \tilde{p} with $|\tilde{p}-p| \leq \varepsilon_{0}$, and all $n \geq t+r$, where $f(\tilde{p}):=\max \left\{g_{0}(\tilde{p}, r, t), g_{1}(\tilde{p}, r, t)\right\}$.
For reals $0<b<a$ we write $a \pm b$ to mean the open interval $(a-b, a+b)$. We note that $f(\tilde{p})$ is a uniformly continuous function of \tilde{p} on $p \pm \varepsilon_{0}$. Let $\gamma=\frac{\gamma_{0}}{4}, \varepsilon=\frac{\varepsilon_{0}}{2}$, and $I=p \pm \varepsilon$. Now we are going to define n_{0}. Choose $\varepsilon_{1} \ll \varepsilon$ so that

$$
\begin{equation*}
(1-3 \gamma) f(\tilde{p})>(1-4 \gamma) f(\tilde{p}+\delta) \tag{23}
\end{equation*}
$$

holds for all $\tilde{p} \in I$ and all $0<\delta \leq \varepsilon_{1}$. As the binomial distribution $B(n, p)$ is concentrated around $p n$, we can choose n_{1} so that

$$
\begin{equation*}
\sum_{i \in J}\binom{n}{i} p_{0}^{i}\left(1-p_{0}\right)^{n-i}>(1-3 \gamma) /(1-2 \gamma) \tag{24}
\end{equation*}
$$

holds for all $n>n_{1}$ and all $p_{0} \in I_{0}:=p \pm \frac{3 \varepsilon}{2}$, where $J=\left(\left(p_{0}-\varepsilon_{1}\right) n,\left(p_{0}+\varepsilon_{1}\right) n\right) \cap \mathbb{N}$. A little calculation shows that we can choose n_{2} so that

$$
\begin{equation*}
(1-\gamma) \max \left\{\left|\mathscr{F}_{0}(n, k, r, t)\right|,\left|\mathscr{F}_{1}(n, k, r, t)\right|\right\}>(1-2 \gamma) f(k / n)\binom{n}{k} \tag{25}
\end{equation*}
$$

holds for all $n>n_{2}$ and k with $k / n \in I$. Finally set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$.
We plug these γ, ε and n_{0} into (20). Then the negation of Theorem 3 gives us some n, k and $\mathscr{F} \in \mathbf{Y}^{1}(n, k, r, t)$ with $|\mathscr{F}| \geq(1-\gamma) \max \left\{\left|\mathscr{F}_{0}(n, k, r, t)\right|,\left|\mathscr{F}_{1}(n, k, r, t)\right|\right\}$, where $n>n_{0}$ and $\frac{k}{n} \in I$. We fix n, k and \mathscr{F}, and let $\tilde{p}=\frac{k}{n}$. By (25) we have $|\mathscr{F}|>c\binom{n}{k}$, where $c=(1-2 \gamma) f(\tilde{p})$. Let $\mathscr{G}=\bigcup_{k \leq i \leq n}\left(\nabla_{i}(\mathscr{F})\right) \in \mathbf{X}^{1}(n, r, t)$ be the collection of all upper shadows of \mathscr{F}, where $\nabla_{i}(\mathscr{F})=\left\{H \in\binom{[n]}{i}: H \supset \exists F \in \mathscr{F}\right\}$. Let $p_{0}=\tilde{p}+\varepsilon_{1} \in I_{0}$.
Claim 6. $\left|\nabla_{i}(\mathscr{F})\right| \geq c\binom{n}{i}$ for $i \in J$.
Proof. Choose a real $x \leq n$ so that $c\binom{n}{k}=\binom{x}{n-k}$. Since $|\mathscr{F}|>c\binom{n}{k}=\binom{x}{n-k}$ the KruskalKatona Theorem [20,19] implies that $\left|\nabla_{i}(\mathscr{F})\right| \geq\binom{ x}{n-i}$. Thus it suffices to show that $\binom{x}{n-i} \geq c\binom{n}{i}$, or equivalently,

$$
\frac{\binom{x}{n-i}}{\binom{x}{n-k}} \geq \frac{c\binom{n}{i}}{c\binom{n}{k}} .
$$

Using $i \geq k$ this is equivalent to $i \cdots(k+1) \geq(x-n+i) \cdots(x-n+k+1)$, which follows from $x \leq n$.

By the claim we have

$$
\begin{equation*}
w_{p_{0}}(\mathscr{G}) \geq \sum_{i \in J}\left|\nabla_{i}(\mathscr{F})\right| p_{0}^{i}\left(1-p_{0}\right)^{n-i} \geq c \sum_{i \in J}\binom{n}{i} p_{0}^{i}\left(1-p_{0}\right)^{n-i} . \tag{26}
\end{equation*}
$$

Using (24) and (23), the RHS of (26) is more than

$$
c(1-3 \gamma) /(1-2 \gamma)=(1-3 \gamma) f(\tilde{p})>(1-4 \gamma) f\left(\tilde{p}+\varepsilon_{1}\right)=\left(1-\gamma_{0}\right) f\left(p_{0}\right)
$$

This means $w_{p_{0}}(\mathscr{G})>\left(1-\gamma_{0}\right) f\left(p_{0}\right)$ which contradicts (22) because $p_{0} \in I_{0} \subset p \pm \varepsilon_{0}$.

Acknowledgment

The author thanks the referees for their careful reading and many helpful suggestions.

References

[1] R. Ahlswede, L.H. Khachatrian. The complete nontrivial-intersection theorem for systems of finite sets. J. Combin. Theory (A), 76:121-138, 1996.
[2] R. Ahlswede, L.H. Khachatrian. The complete intersection theorem for systems of finite sets. European J. Combin., 18:125-136, 1997.
[3] R. Ahlswede, L.H. Khachatrian. The diametric theorem in Hamming spaces - Optimal anticodes. Adv. in Appl. Math., 20:429-449, 1998.
[4] A. Brace, D. E. Daykin. A finite set covering theorem. Bull. Austral. Math. Soc., 5:197-202, 1971.
[5] C. Bey, K. Engel. Old and new results for the weighted t-intersection problem via AK-methods. Numbers, Information and Complexity, Althofer, Ingo, Eds. et al., Dordrecht, Kluwer Academic Publishers, 45-74, 2000.
[6] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313-320, 1961.
[7] I. Dinur, S. Safra. On the Hardness of Approximating Minimum Vertex-Cover. Annals of Mathematics, 162:439-485, 2005.
[8] P. Frankl. On Sperner families satisfying an additional condition. J. Combin. Theory (A), 20:1-11, 1976.
[9] P. Frankl. The Erdős-Ko-Rado theorem is true for $n=$ ckt. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthey, 1976), Vol. I, 365-375, Colloq. math. Soc. János Bolyai, 18, North-Holland, 1978.
[10] P. Frankl. On intersecting families of finite sets. J. Combin. Theory (A), 24:141-161, 1978.
[11] P. Frankl. Multiply-intersecting families. J. Combin. Theory (B), 53:195-234, 1991.
[12] P. Frankl, N. Tokushige. Weighted 3-wise 2-intersecting families. J. Combin. Theory (A) 100:94-115, 2002.
[13] P. Frankl, N. Tokushige. Weighted multiply intersecting families. Studia Sci. Math. Hungarica 40:287291, 2003.
[14] P. Frankl, N. Tokushige. Random walks and multiply intersecting families. J. Combin. Theory (A), 109:121-134, 2005.
[15] P. Frankl, N. Tokushige. Weighted non-trivial multiply intersecting families. Combinatorica, 26 37-46, 2006.
[16] E. Friedgut. On the measure of intersecting families, uniqueness and stability, to appear in Combinatorica.
[17] A. J. W. Hilton, E. C. Milner. Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford, 18:369-384, 1967.
[18] G.O.H. Katona. Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hung., 15:329337, 1964.
[19] G.O.H. Katona. A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966 (Akademiai Kiadó, 1968) 187-207.
[20] J.B. Kruskal. The number of simplices in a complex, in: Math. Opt. Techniques (Univ. of Calif. Press, 1963) 251-278.
[21] D. Mubayi. An intersection theorem for four sets. Advances in Mathematics 215:601-615, 2007.
[22] N. Tokushige. Intersecting families - uniform versus weighted. Ryukyu Math. J., 18:89-103, 2005.
[23] N. Tokushige. Extending the Erdős-Ko-Rado theorem. J. Combin. Designs, 14:52-55, 2006.
[24] N. Tokushige. The maximum size of 3-wise t-intersecting families. European J. Combin, 28:152-166, 2007.
[25] N. Tokushige. EKR type inequalities for 4-wise intersecting families. J. Combin. Theory (A), 114:575596, 2007.
[26] N. Tokushige. Multiply-intersecting families revisited. J. Combin. Theory (B), 97:929-948, 2007.
[27] N. Tokushige. Brace-Daykin type inequalities for intersecting families. European J. Combin, 29:273285, 2008.
[28] N. Tokushige. The random walk method for intersecting families. in Horizons of combinatorics, Bolyai society mathematical studies 17:215-224, 2008.
[29] R.M. Wilson. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica, 4:247-257, 1984.
College of Education, Ryukyu University, Nishihara, Okinawa, 903-0213 Japan
E-mail address: hide@edu.u-ryukyu.ac.jp

