A MULTIPLY INTERSECTING ERDŐS–KO–RADO THEOREM — THE PRINCIPAL CASE

NORIHIDE TOKUSHIGE

ABSTRACT. Let m(n, k, r, t) be the maximum size of $\mathscr{F} \subset {[n] \choose k}$ satisfying $|F_1 \cap \cdots \cap F_r| \ge t$ for all $F_1, \ldots, F_r \in \mathscr{F}$. We prove that for every $p \in (0, 1)$ there is some r_0 such that, for all $r > r_0$ and all t with $1 \le t \le \lfloor (p^{1-r} - p)/(1-p) \rfloor - r$, there exists n_0 so that if $n > n_0$ and p = k/n, then $m(n, k, r, t) = {n-t \choose k-t}$. The upper bound for t is tight for fixed p and r.

1. INTRODUCTION

Let n, k, r and t be positive integers, and let $[n] = \{1, 2, ..., n\}$. A family $\mathscr{G} \subset 2^{[n]}$ is called *r*-wise *t*-intersecting if $|G_1 \cap \cdots \cap G_r| \ge t$ holds for all $G_1, ..., G_r \in \mathscr{G}$. Let us define a typical *r*-wise *t*-intersecting family $\mathscr{G}_i(n, r, t)$ and its *k*-uniform subfamily $\mathscr{F}_i(n, k, r, t)$, where $0 \le i \le \lfloor \frac{n-t}{r} \rfloor$, as follows:

$$\mathcal{G}_i(n,r,t) = \{G \subset [n] : |G \cap [t+ri]| \ge t + (r-1)i\},$$

$$\mathcal{F}_i(n,k,r,t) = \mathcal{G}_i(n,r,t) \cap {[n] \choose k}.$$

Two families $\mathscr{G}, \mathscr{G}' \subset 2^{[n]}$ are said to be isomorphic, and denoted by $\mathscr{G} \cong \mathscr{G}'$, if there exists a vertex permutation τ on [n] such that $\mathscr{G}' = \{\{\tau(g) : g \in G\} : G \in \mathscr{G}\}.$

Let m(n,k,r,t) be the maximum size of k-uniform r-wise t-intersecting families on n vertices. To determine m(n,k,r,t) is one of the oldest problems in extremal set theory, which is still widely open. The case r = 2 was observed by Erdős, Ko and Rado [6], Frankl [9], Wilson [29], and then $m(n,k,2,t) = \max_i |\mathscr{F}_i(n,k,2,t)|$ was finally proved by Ahlswede and Khachatrian [2]. Frankl [8] showed $m(n,k,r,1) = |\mathscr{F}_0(n,k,r,1)|$ if $(r-1)n \ge rk$. Partial results for the cases $r \ge 3$ and $t \ge 2$ are found in [12, 14, 22, 23, 24, 25, 26, 28]. All known results suggest

$$m(n,k,r,t) = \max_{i} |\mathscr{F}_{i}(n,k,r,t)|.$$

In this paper, we will consider the principal case, namely, the case when the maximum is attained by $\mathscr{F}_0(n,k,r,t)$. For fixed $p = k/n \in (0,1)$, *r* and *t*, a computation shows that

$$\lim_{n \to \infty} |\mathscr{F}_1(n,k,r,t)| / |\mathscr{F}_0(n,k,r,t)| \le 1 \text{ iff } 1 \le t \le (p^{1-r} - p) / (1-p) - r =: t_{p,r}.$$
(1)

To consider the interval for t including $\{1, 2, ..., \lfloor t_{p,r} \rfloor\}$ let us define $T_{p,r}(>t_{p,r})$ by

$$T_{p,r} = p^{1-r} / (1-p) - \log r.$$
(2)

Date: March 19, 2009, 11:01am.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 05D05 Secondary: 05C65.

Key words and phrases. Erdős-Ko-Rado Theorem; intersecting family; p-weight.

The author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027 and 20340022.

Then we can state a generalized Erdős–Ko–Rado theorem for *r*-wise *t*-intersecting families as follows.

Theorem 1. For all $p \in (0,1)$ there exists r_0 such that the following holds. For all $r > r_0$ and all t with $1 \le t \le T_{p,r}$, there exist positive constants ε , n_0 such that

$$m(n,k,r,t) = \max\{|\mathscr{F}_0(n,k,r,t)|, |\mathscr{F}_1(n,k,r,t)|\}$$

holds for all $n > n_0$ and k with $|\frac{k}{n} - p| < \varepsilon$. Moreover, $\mathscr{F}_0(n,k,r,t)$ and $\mathscr{F}_1(n,k,r,t)$ are the only optimal families (up to isomorphism).

Now we introduce the *p*-weight version of the Erdős–Ko–Rado theorem. Throughout this paper, *p* and q = 1 - p denote positive real numbers. For $X \subset [n]$ and a family $\mathscr{G} \subset 2^X$ we define the *p*-weight of \mathscr{G} , denoted by $w_p(\mathscr{G} : X)$, as follows:

$$w_p(\mathscr{G}:X) = \sum_{G \in \mathscr{G}} p^{|G|} q^{|X| - |G|} = \sum_{i=0}^{|X|} \left| \mathscr{G} \cap {X \choose i} \right| p^i q^{|X| - i}.$$

We simply write $w_p(\mathscr{G})$ for the case X = [n]; for example, we have $w_p(2^{[n]}) = 1$ and $w_p(\mathscr{G}_0(n,r,t)) = p^t$. A direct computation shows that the *p*-weight of $\mathscr{G}_i(n,r,t)$ is independent of *n* for $n \ge t + ri$. So let

$$g_i(p,r,t) = w_p(\mathscr{G}_i(n,r,t)).$$

Let w(n, p, r, t) be the maximum *p*-weight of *r*-wise *t*-intersecting families on *n* vertices. It might be natural to expect

$$w(n, p, r, t) = \max_{i} w_p(\mathscr{G}_i(n, r, t)) = \max_{i} g_i(p, r, t).$$

Ahlswede and Khachatrian proved that this is true for r = 2 in [3] (cf. [5, 7, 22]). This includes the Katona theorem [18] about w(n, 1/2, 2, t). It is shown in [13] that

$$w(n, p, r, 1) = p \text{ for } p \le (r - 1)/r.$$
 (3)

We can check that $g_0(p, r, t) \ge g_1(p, r, t)$ iff $1 \le t \le t_{p,r}$ cf. (1). In [11], Frankl considered the case p = 1/2 and proved $w(n, p, r, t) = p^t$ for $1 \le t \le t_{p,r} = 2^r - r - 1$. This result was extended for the case $|p - 1/2| < \varepsilon$ in [26]. In this paper we will generalize these results from $p \approx 1/2$ to any given $p \in (0, 1)$ as follows.

Theorem 2. For all $p \in (0,1)$ there exists r_0 such that for all $r > r_0$, all t with $1 \le t \le T_{p,r}$, and all $n \ge t + r$, we have

$$w(n, p, r, t) = \max\{g_0(p, r, t), g_1(p, r, t)\}.$$

Moreover, $\mathcal{G}_0(n,r,t)$ and $\mathcal{G}_1(n,r,t)$ are the only optimal families (up to isomorphism).

We will deduce Theorems 1 and 2 from slightly stronger, stability type results (cf. [16, 21]). To state our main results let us define some collections of families as follows. For

2

 $0 \le i \le |(n-t)/r|$ (but we will actually need the case i = 0, 1 only), let

$$\mathbf{G}(n,r,t) = \{\mathscr{G} \subset 2^{[n]} : \mathscr{G} \text{ is } r \text{-wise } t \text{-intersecting}\},\\ \mathbf{G}_i(n,r,t) = \{\mathscr{G} \subset 2^{[n]} : \mathscr{G} \subset \mathscr{G}' \text{ for some } \mathscr{G}' \cong \mathscr{G}_i(n,r,t)\}\\ \mathbf{X}^i(n,r,t) = \mathbf{G}(n,r,t) \setminus \bigcup_{0 \le j \le i} \mathbf{G}_j(n,r,t),\\ \mathbf{Y}^i(n,k,r,t) = \{\mathscr{F} \subset {[n] \atop k} : \mathscr{F} \in \mathbf{X}^i(n,r,t)\},$$

and finally let us define

$$m^{i}(n,k,r,t) = \max\{|\mathscr{F}| : \mathscr{F} \in \mathbf{Y}^{i}(n,k,r,t)\},\$$

$$w^{i}(n,p,r,t) = \max\{w_{p}(\mathscr{G}) : \mathscr{G} \in \mathbf{X}^{i}(n,r,t)\}.$$

Ahlswede and Khachatrian [1] determined $m^0(n,k,2,t)$ completely, extending the earlier results by Hilton and Milner [17] and Frankl [10]. Brace and Daykin [4] determined $w^0(n, 1/2, r, 1)$ and Frankl [11] determined $w^0(n, 1/2, r, t)$ for $r \ge 5$ and $1 \le t \le 2^r - r - 1$. More partial results for $m^1(n,k,r,t)$ with $k/n \approx 1/2$ and $w^1(n,p,r,t)$ with $p \approx 1/2$ are found in [15, 26, 27]. Our main results are the following.

Theorem 3. For all $p \in (0,1)$ there exists r_0 such that the following holds. For all $r > r_0$ and all t with $1 \le t \le T_{p,r}$, there exist positive constants γ, ε, n_0 such that

$$m^{1}(n,k,r,t) < (1-\gamma)\max\{|\mathscr{F}_{0}(n,k,r,t))|,|\mathscr{F}_{1}(n,k,r,t))|\}$$

holds for all $n > n_0$ *and* k *with* $\left|\frac{k}{n} - p\right| < \varepsilon$ *.*

Theorem 4. For all $p \in (0,1)$ there exists r_0 such that the following holds. For all $r > r_0$ and all t with $1 \le t \le T_{p,r}$, there exist there exist positive constants γ, ε such that

$$w^{1}(n,\tilde{p},r,t) < (1-\gamma)\max\{g_{0}(\tilde{p},r,t),g_{1}(\tilde{p},r,t)\}$$
(4)

holds for all n with $n \ge t + r$ *and all* \tilde{p} *with* $|\tilde{p} - p| < \varepsilon$ *.*

The condition $r > r_0$ is necessary in the above theorems. To see this, we give an example which violates (4). Let r < 1/(1-p), or equivalently, $p > 1 - \frac{1}{r}$. Consider a family $\mathscr{G} = \{G \subset [n] : |G| \ge (1 - \frac{1}{r})n + \frac{t}{r}\}$. Then one can check that $\mathscr{G} \in \mathbf{X}^1(n, r, t)$. As the binomial distribution B(n, p) is concentrated around pn, we see that $\lim_{n\to\infty} w_p(\mathscr{G}) = 1$. Thus, (4) fails even if $\gamma = 0$.

Theorem 3 and Theorem 4 immediately imply Theorem 1 and Theorem 2, respectively. We first prove Theorem 4 in Section 3. Our proof technique is largely based on [11, 26]. Then we deduce Theorem 3 from Theorem 4 in Section 4. We prepare some tools in Section 2.

In our proof of the theorems, we will make no effort to reduce the value of r_0 . Instead, we try to give a simpler proof assuming r_0 large enough. Our proof admits to replace $\log r$ in (2) with any function f(r) satisfying $f(r) \to +\infty$ as $r \to +\infty$.

2. Tools

2.1. Some inequalities. Let $p, q \in (0, 1)$ with p + q = 1. We consider the situation that r is large enough for fixed p, and we always assume that qr > 1. In this case, the equation $qx^r - x + p = 0$ has unique root $\alpha_{r,p}$ in the interval (p, 1). In fact, letting $f(x) = qx^r - x + p$,

one can check that f(0) = p > 0, f(1) = 0. Also $f'(x) = qrx^{r-1} - 1$ has unique real zero $x = (qr)^{-1/(r-1)} \in (0,1)$. We sometimes write α_r for $\alpha_{r,p}$ omitting p if this makes no confusion.

Lemma 1 ([27]). Let p, r, t_0, c be fixed constants. Suppose that $w(n, p, r, t_0) \leq c$ holds for all $n \geq t_0$. Then we have $w(n, p, r, t) \leq c \alpha_{r,p}^{t-t_0}$ for all $t \geq t_0$ and $n \geq t$. In particular, we always have $w(n, p, r, t) \leq \alpha_{r,p}^t$.

Lemma 2. $\mathbf{X}^{0}(n,r,t) \subset \mathbf{X}^{0}(n,r-1,t+1)$ and $w^{0}(n,p,r,t) \leq w^{0}(n,p,r-1,t+1)$.

Proof. Let $\mathscr{G} \in \mathbf{X}^0(n, r, t)$. If \mathscr{G} is not (r-1)-wise (t+1)-intersecting, then we can find $G_1, \ldots, G_{r-1} \in \mathscr{G}$ such that $|G_1 \cap \cdots \cap G_{r-1}| = t$. But \mathscr{G} is *r*-wise *t*-intersecting and so every $G \in \mathscr{G}$ must contain $G_1 \cap \cdots \cap G_{r-1}$. This means $\mathscr{G} \notin \mathbf{X}^0(n, r, t)$, a contradiction. Thus, $\mathscr{G} \in \mathbf{G}(n, r-1, t+1)$. If \mathscr{G} fixes t+1 vertices, then $\mathscr{G} \notin \mathbf{X}^0(n, r, t)$. Therefore we have $\mathscr{G} \in \mathbf{X}^0(n, r-1, t+1)$.

Lemma 3. For any *i* with $0 \le i \le \lfloor (n-t)/r \rfloor$, we have $w^i(n+1, p, r, t) \ge w^i(n, p, r, t)$.

Proof. Choose $\mathscr{G} \in \mathbf{X}^i(n,r,t)$ with $w_p(\mathscr{G}) = w^i(n,p,r,t)$. Then $\mathscr{G}' := \mathscr{G} \cup \{G \cup \{n+1\} : G \in \mathscr{G}\} \in \mathbf{X}^i(n+1,r,t)$ and $w_p(\mathscr{G}' : [n+1]) = w_p(\mathscr{G} : [n])(q+p) = w^i(n,p,r,t)$, which means $w^i(n+1,p,r,t) \ge w^i(n,p,r,t)$.

For a positive integer *i* and a real $p \in (0, 1)$, let

$$c_i := c_i(p) = -i(p/q)\log p.$$
⁽⁵⁾

Lemma 4. For any positive integer *i* and any real $p \in (0,1)$ there exists $r_1 \in \mathbb{N}$ such that $\alpha_r^{y+i} < p^y$ holds for all $r \ge r_1$ and all $y = dp^{-r}$ with $0 < d \le c_i$.

Proof. Set $\alpha = \alpha_r$ and $\beta = 1/(y+i)$. We want to show that $\alpha^{y+i} < p^y$, that is, $\alpha < p^{1-i\beta}$. Let $f(x) = qx^r - x + p$. Since $f(x) \ge 0$ for $0 < x \le \alpha$ and f(x) < 0 for $\alpha < x < 1$, it suffices to show that $f(p^{1-i\beta}) < 0$, that is,

$$(q/p)p^{-i\beta r} < p^{-r}(p^{-i\beta}-1).$$
 (6)

Noting that $p^{-i\beta} = \exp(\log p^{-i\beta}) > 1 + \log(p^{-i\beta}) = 1 - i\beta \log p$, the RHS of (6) is more than

$$p^{-r}(-i\beta\log p) = \frac{-ip^{-r}\log p}{y+i} = \frac{-ip^{-r}\log p}{dp^{-r}+i} \to \frac{-i\log p}{d} \text{ as } r \to \infty.$$

On the other hand, the LHS of (6) is

$$(q/p)(p^{-i})^{\frac{r}{y+i}} = (q/p)(p^{-i})^{\frac{r}{dp-r+i}} \to q/p \text{ as } r \to \infty.$$

Thus (6) holds for sufficiently large *r* if $q/p \le -i(\log p)/d$, that is, $d \le c_i$.

Lemma 5. For all $p \in (0,1)$ there exist $r_1 \in \mathbb{N}$ and $\mu \in (0,1)$ such that the following holds. For all $r \ge r_1 + 1$ and all t with $1 \le t \le \lfloor c_1 p(p^{-r} - p^{-r_1})/q \rfloor$, where c_1 is defined by (5), and all $n \ge t + r$, it follows $w^0(n, p, r, t) \le \mu p^t$.

4

Proof. Choose r_1 from Lemma 4 for i = 1. For $r \ge r_1 + 1$ define a_r by

$$a_r = c_1 \sum_{j=r_1}^{r-1} p^{-j} = c_1 p (p^{-r} - p^{-r_1})/q.$$
(7)

Then we have $a_{r_1+1} = c_1 p^{-r_1}$ and $a_{r+1} - a_r = c_1 p^{-r}$ for $r \ge r_1 + 1$.

Let $r \ge r_1 + 1$. We will show $w^0(n, p, r, t) \le \mu p^t$ for all t with $1 \le t \le \lfloor a_r \rfloor$, and $n \ge r+t$, by induction on r. For the base case $r = r_1 + 1$, by Lemmas 2 and 1, we have

$$w^{0}(n, p, r_{1}+1, t) \leq w^{0}(n, p, r_{1}, t+1) \leq \alpha_{r_{1}}^{t+1}.$$

Then using Lemma 4 for y = t and i = 1, we have $\alpha_{r_1}^{t+1} < p^t$ for $t \le c_1 p^{-r_1} = a_{r_1+1}$. Let $\mu = \max\{\alpha_{r_1}(\alpha_{r_1}/p)^t : 1 \le t \le \lfloor a_{r_1+1} \rfloor\}$. The maximum is attained when $t = \lfloor a_{r_1+1} \rfloor$. This $\mu = \mu(p) \in (0,1)$ satisfies $w^0(n, p, r_1 + 1, t) \le \mu p^t$ for all $1 \le t \le \lfloor a_{r_1+1} \rfloor$.

For the induction step, Lemmas 2 and 1 imply that

$$w^{0}(n,p,r+1,t) \leq w^{0}(n,p,r,t+1) \leq w^{0}(n,p,r,\lfloor a_{r} \rfloor) \alpha_{r}^{t+1-\lfloor a_{r} \rfloor}.$$

Using the induction hypothesis $w^0(n, p, r, \lfloor a_r \rfloor) \le \mu p^{\lfloor a_r \rfloor}$, we have

$$w^{0}(n,p,r+1,t) \leq \mu p^{\lfloor a_r \rfloor} \alpha_r^{t+1-\lfloor a_r \rfloor} \leq \mu p^{a_r} \alpha_r^{t+1-a_r}.$$

The RHS is at most μp^t iff $\alpha_r^{(t-a_r)+1} \le p^{t-a_r}$. Applying Lemma 4 for $y = t - a_r$ and i = 1, this is true if $t - a_r \le c_1 p^{-r}$, that is, $t \le a_r + c_1 p^{-r} = a_{r+1}$.

2.2. Shifting. For integers $1 \le i < j \le n$ and a family $\mathscr{G} \subset 2^{[n]}$, we define the (i, j)-shift σ_{ij} as follows:

$$\sigma_{ii}(\mathscr{G}) = \{\sigma_{ii}(G) : G \in \mathscr{G}\},\$$

where

$$\sigma_{ij}(G) = \begin{cases} (G - \{j\}) \cup \{i\} & \text{if } i \notin G, j \in G, (G - \{j\}) \cup \{i\} \notin \mathscr{G}, \\ G & \text{otherwise.} \end{cases}$$

A family $\mathscr{G} \subset 2^{[n]}$ is called *shifted* if $\sigma_{ij}(\mathscr{G}) = \mathscr{G}$ for all $1 \leq i < j \leq n$, and \mathscr{G} is called *tame* if it is shifted and $\bigcap \mathscr{G} = \emptyset$. If \mathscr{G} is *r*-wise *t*-intersecting, then so is $\sigma_{ij}(\mathscr{G})$. We notice that $\mathscr{G} \in \mathbf{X}^0(n, r, t)$ does not necessarily imply $\sigma_{ij}(\mathscr{G}) \in \mathbf{X}^0(n, r, t)$, because $\sigma_{ij}(\mathscr{G})$ may fix *t* vertices.

Lemma 6. If $\mathscr{G} \in \mathbf{X}^0(n, r, t)$ is *p*-weight maximum, then we can find a tame $\mathscr{G}' \in \mathbf{X}^0(n, r, t)$ with $w_p(\mathscr{G}') = w_p(\mathscr{G})$.

Proof. If $\mathscr{G} \in \mathbf{X}^0(n, r, t)$ then $\mathscr{G} \in \mathbf{X}^0(n, r-1, t+1)$ by Lemma 2. We apply all possible shifting operations to \mathscr{G} to get a shifted family $\mathscr{G}' \in \mathbf{G}(n, r, t) \subset \mathbf{G}(n, r-1, t+1)$. Since each shifting operation preserves the *p*-weight, we have $w_p(\mathscr{G}) = w_p(\mathscr{G}')$.

We have to show that $\bigcap \mathscr{G}' = \emptyset$. Otherwise we may assume that $1 \in \bigcap \mathscr{G}'$ and $H = [2,n] \notin \mathscr{G}'$. Since \mathscr{G}' is *p*-weight maximum we can find $G_1, \ldots, G_{r-1} \in \mathscr{G}'$ such that $|G_1 \cap \cdots \cap G_{r-1} \cap H| < t$. Then we have $|G_1 \cap \cdots \cap G_{r-1}| < t+1$, which is a contradiction. \Box

A family $\mathscr{G} \subset 2^{[n]}$ is called a *filter* if it is closed upwards: if $G \in \mathscr{G}$ and $G \subset G'$ then $G' \in \mathscr{G}$. If \mathscr{G} is a filter, then so is $\sigma_{ij}(\mathscr{G})$. We also notice that if $\mathscr{G} \in \mathbf{X}^0(n, r, t)$ is *p*-weight maximum then \mathscr{G} is necessarily a filter.

3. PROOF OF THEOREM 4

We start with the following simple observation.

Claim 1. Let $\mathscr{G} \in \mathbf{X}^1(n, r, t)$ be fixed, and let $f(p) := \max\{g_0(p, r, t), g_1(p, r, t)\}$. If $w_p(\mathscr{G}) < f(p)$ for some p, then there exist $\gamma, \varepsilon > 0$ such that $w_{\tilde{p}}(\mathscr{G}) < (1 - \gamma)f(\tilde{p})$ for all $|\tilde{p} - p| < \varepsilon$.

This is because both $w_p(\mathscr{G})$ and f(p) are continuous functions of variable p. So, to prove Theorem 4, it is enough to show that $w_p(\mathscr{G}) < f(p)$ for given p and $\mathscr{G} \in \mathbf{X}^1(n, r, t)$ provided $r \ge r_0$, $1 \le t \le T_{p,r}$.

The actual proof goes as follows. Let $\mathscr{G} \in \mathbf{X}^1(n, r, t)$ be *p*-weight maximum. Choose a tame $\mathscr{G}^* \in \mathbf{X}^0(n, r, t)$ with $w_p(\mathscr{G}^*) = w_p(\mathscr{G})$ by Lemma 6. Then we will show the following.

Case 1. If $\mathscr{G}^* \subset \mathscr{G}_1(n,r,t)$ then $w_p(\mathscr{G}^*) < (1-\gamma)g_1(p,r,t)$. Case 2. If $\mathscr{G}^* \not\subset \mathscr{G}_1(n,r,t)$ then $w_p(\mathscr{G}^*) < (1-\gamma)g_0(p,r,t)$.

In the proof, after having *p*, *r* and *t*, we may assume that *n* is large enough by Lemma 3. For Case 1, we show the following.

Lemma 7. For all $p \in (0,1)$, $r \ge 2 + 1/q$, t with $1 \le t \le T_{p,r+1}$, and all $n \ge t+r$, the following holds. Let $\mathscr{G} \in \mathbf{X}^1(n,r,t)$ be p-weight maximum and let $\mathscr{G}^* \in \mathbf{X}^0(n,r,t)$ be a tame family obtained by shifting from \mathscr{G} . If $\mathscr{G}^* \subset \mathscr{G}_1(n,r,t)$ then $w_p(\mathscr{G}^*) \le (1-\gamma)g_1(p,r,t)$, where $\gamma = \frac{q}{(r-2)}(\frac{t+r}{p} + \frac{1}{q})^{-1}$.

Proof of Lemma 7. Let p, r, t, n be given. Set $\mathscr{G}_1 = \mathscr{G}_1(n, r, t)$. Let $\mathscr{G}' \in \mathbf{X}^1(n, r, t)$ be *p*-weight maximum. Note that \mathscr{G}' is not necessarily shifted. By Lemma 6 we can find a tame $\mathscr{G}^* \in \mathbf{X}^0(n, r, t)$ in a sequence of shifting $\mathscr{G}' \to \cdots \to \mathscr{G}^*$ with $w_p(\mathscr{G}') = \cdots = w_p(\mathscr{G}^*)$. Suppose that $\mathscr{G}^* \subset \mathscr{G}_1$. Then we find some $\mathscr{G} \in \mathbf{G}(n, r, t)$ in the sequence such that $\mathscr{G} \not\subset \mathscr{G}_1$ and $\sigma_{xy}(\mathscr{G}) \subset \mathscr{G}_1$, where we may assume that x = t + r, y = x + 1. We note that $|[x] \cap G| \ge x - 2$ for all $G \in \mathscr{G}$. Moreover, if $|[x] \cap G| = x - 2$ then $G \cap \{x, y\} = \{y\}$ and $(G - \{y\}) \cup \{x\} \notin \mathscr{G}$.

For $i \in [x]$ set $\mathscr{G}(i) = \{G \in \mathscr{G} : [y] \setminus G = \{i\}\}$, and for $j \in [x-1]$ and $z \in \{x, y\}$ let $\mathscr{G}_z(j) = \{G \in \mathscr{G} : [y] \setminus G = \{j, z\}\}$, $\mathscr{H}_z(j) = \{G \setminus [y] : G \in \mathscr{G}_z(j)\}$. Since $\sigma_{xy}(\mathscr{G}) \subset \mathscr{G}_1$ we have $\mathscr{H}_x(j) \cap \mathscr{H}_y(j) = \emptyset$ and so $w_p(\mathscr{G}_x(j)) + w_p(\mathscr{G}_y(j)) \le p^{x-1}q^2$. Set $\mathscr{G}_{\emptyset} = \{G \in \mathscr{G} : [x] \subset G\}$, $\mathscr{G}_{xy} = \{G \in \mathscr{G} : G \cap [y] = [x-1]\}$, and let $e = \min_{i \in [x]} w_p(\mathscr{G}(i))$. Then we have

$$w_p(\mathscr{G}) = \sum_{i \in [x]} w_p(\mathscr{G}(i)) + \sum_{j \in [x-1]} \left(w_p(\mathscr{G}_x(j)) + w_p(\mathscr{G}_y(j)) \right) + w_p(\mathscr{G}_0) + w_p(\mathscr{G}_{xy})$$
(8)

$$\leq e + (x-1)p^{x}q + (x-1)p^{x-1}q^{2} + p^{x} + p^{x-1}q^{2} = e + (\eta - 1)p^{x}q,$$
(9)

where $\eta = \frac{x}{p} + \frac{1}{q}$. Note that $e \leq p^{x}q$, and (9) coincides with $w_{p}(\mathscr{G}_{1}) = xp^{x-1}q + p^{x} = \eta p^{x}q$ iff $e = p^{x}q$. If there is some $j \in [x-1]$ such that $\mathscr{G}_{x}(j) \cup \mathscr{G}_{y}(j) = \emptyset$, then by (8) we get $w_{p}(\mathscr{G}) \leq w_{p}(\mathscr{G}_{1}) - p^{x-1}q^{2} = (1 - q/(\eta p))w_{p}(\mathscr{G}_{1}) = (1 - (r-2)\gamma)w_{p}(\mathscr{G}_{1})$, and we are done. Thus we may assume that

$$\mathscr{G}_{x}(j) \cup \mathscr{G}_{y}(j) \neq \emptyset \text{ for all } j \in [x-1].$$
(10)

To prove $w_p(\mathscr{G}) \leq (1 - \gamma) w_p(\mathscr{G}_1)$ by contradiction, let us assume that

$$w_p(\mathscr{G}) > (1 - \gamma)w_p(\mathscr{G}_1) = (1 - \gamma)\eta p^x q.$$
(11)

7

By (9) and (11) we have $e > (1 - \gamma \eta) p^x q$. This means, letting $\mathcal{H}(i) = \{G \setminus [y] : G \in \mathcal{G}(i)\}$ and Y = [y + 1, n], we have

$$w_p(\mathscr{H}(i):Y) > 1 - \gamma \eta \text{ for all } i \in [x].$$
(12)

Since $\mathscr{G} \not\subset \mathscr{G}_1$, both $\bigcup_{j \in [x-1]} \mathscr{G}_x(j)$ and $\bigcup_{j \in [x-1]} \mathscr{G}_y(j)$ are non-empty. Using this with (10), we can choose $G \in \mathscr{G}_x(j)$ and $G' \in \mathscr{G}_y(j')$ with $j \neq j'$, say, j = x - 1, j' = x - 2. Let L = [r-2] and $\mathscr{H}^* = \bigcap_{\ell \in L} \mathscr{H}(\ell)$. Then by (12) we have

$$w_p(\mathscr{H}^*:Y) > 1 - (r-2)\gamma\eta.$$
(13)

If $\mathscr{H}^* \subset 2^Y$ is not (r-2)-wise 1-intersecting, then we can find $H_1, \ldots, H_{r-2} \in \mathscr{H}^*$ such that $H_1 \cap \cdots \cap H_{r-2} = \emptyset$. Setting $G_\ell = ([y] \setminus \{\ell\}) \cup H_\ell \in \mathscr{G}$ we have $|G_1 \cap \cdots \cap G_{r-2} \cap G \cap G'| = t-1$, which contradicts the *r*-wise *t*-intersecting property of \mathscr{G} . Thus \mathscr{H}^* is (r-2)-wise 1-intersecting and $w_p(\mathscr{H}^*:Y) \leq p$ by (3), where we need $(r-2)q \geq 1$. But this contradicts (13) because we chose γ so that $p = 1 - (r-2)\gamma\eta$. This completes the proof of Lemma 7.

Next we consider Case 2. Rename \mathscr{G}^* by \mathscr{G} . Here, to make the proof notationally simpler, we consider the case r + 1 instead of the case r. Then, it suffices to show the following lemma for Case 2.

Lemma 8. For all $p \in (0,1)$ there exists r_0 such that the following holds. For all $r > r_0$, all t with $1 \le t \le T_{p,r+1}$, there exists $\gamma \in (0,1)$ such that for all $n \ge t + (r+1)$ and all tame $\mathscr{G} \in \mathbf{X}^0(n, r+1, t)$ with $\mathscr{G} \not\subset \mathscr{G}_1(n, r+1, t)$, it follows that $w_p(\mathscr{G}) < (1-\gamma)p^t$.

Proof of Lemma 8. Let $p \in (0,1)$ be given. We choose $r_0 = r_0(p)$ sufficiently large, which will be specified in the proof. Then, let $r > r_0$ and $1 \le t \le T_{p,r+1}$ be given. We choose $\gamma = \gamma(p,r,t) \in (0,1)$ close enough to 1, and the closeness will be specified in the proof. Finally let $\mathscr{G} \in \mathbf{X}^0(n,r+1,t)$ be given with $\mathscr{G} \not\subset \mathscr{G}_1(n,r+1,t)$, where $n \ge t + (r+1)$.

Let $t^{(i)} = \max\{j : \mathscr{G} \text{ is } i\text{-wise } j\text{-intersecting}\}$. We may assume that $t^{(r+1)} = t$ and \mathscr{G} is *p*-weight maximum among all tame $\mathscr{G} \in \mathbf{X}^0(n, r+1, t)$ with $\mathscr{G} \not\subset \mathscr{G}_1(n, r+1, t)$. Let $t^{(r)} = t + s$. We have $s \ge 1$ by Lemma 2. Choose r_1 from Lemma 5. Using Lemma 1 with Lemma 5, we have

$$w_p(\mathscr{G}) \le w^0(n, p, r, t+s) \le w^0(n, p, r, \lfloor a_r \rfloor) \alpha_r^{(t+s)-\lfloor a_r \rfloor} \le \mu p^{a_r} \alpha_r^{(t+s)-a_r},$$

for some $\mu = \mu(p) \in (0, 1)$, where a_r is defined in (7). We want to show the RHS is at most μp^t , or equivalently, $\alpha_r^{t-a_r+s} \leq p^{t-a_r}$. Choosing *r* sufficiently large, that is, $r > r_1$, this is true if $t - a_r \leq c_s p^{-r}$ by Lemma 4. Thus we get the desired inequality $w_p(\mathscr{G}) \leq \mu p^t$ if

$$(t \le) T_{p,r+1} \le c_s p^{-r} + a_r.$$
(14)

The LHS is $T_{p,r+1} = p^{-r}/q - \log r$, while the RHS is

$$c_s p^{-r} + a_r = sc_1 p^{-r} + a_r = c_1 p^{-r} (s + p/q) - c_1 p^{1-r_1}/q.$$

We choose $r > r_0 \gg r_1$ so that $-\log r < -c_1 p^{1-r_1}/q = (p^{2-r_1}/q)\log p$. Then we have (14) if $p^{-r}/q \le c_1 p^{-r}(s+p/q)$, that is, $-p(\log p)(s+p/q) \ge 1$. This is true if

$$s \ge s_0 := (-p \log p)^{-1} - p/q.$$
 (15)

So we may assume that $1 \le s < s_0$. After [11] let $h = \min\{i : |G \cap [t+i]| \ge t \text{ for all } G \in \mathscr{G}\}$. This is the minimum size of "holes" in [t+h].

Claim 2. $1 \le h \le s (< s_0)$.

Proof. Since $\mathscr{G} \in \mathbf{X}^0(n, r+1, t)$, we have $h \ge 1$. By the definition of *s* and the shiftedness of \mathscr{G} , we have $G_1, \ldots, G_r \in \mathscr{G}$ such that $G_1 \cap \cdots \cap G_r = [t+s]$. Then it follows from $t^{(r+1)} = t$ that $|[t+s] \cap G| \ge t$ for all $G \in \mathscr{G}$, which implies, $t+h \le t+s$.

Let b = t + h - 1 and let $T_i = [b + 1 - i, b]$ be the right-most *i*-set in [b]. For $A \subset [b]$ let $\mathscr{G}(A) = \{G \cap [b+1, n] : G \in \mathscr{G}, [b] \setminus G = A\}.$

Since \mathscr{G} is shifted, we have $\mathscr{G}(A) \subset \mathscr{G}(T_i)$ for all $A \in {\binom{[b]}{i}}$. Thus, for each $G \in \mathscr{G}$ with $|[b] \setminus G| = i$, we can find $G' \in \mathscr{G}(T_i)$ such that $G = ([b] \setminus G) \cup G'$. By considering the weight of \mathscr{G} on [b] and [b+1,n] separately, we have

$$w_p(\mathscr{G}) \le \sum_{i=0}^h {b \choose i} p^{b-i} q^i w_p(\mathscr{G}(T_i) : [b+1,n]).$$

$$(16)$$

Claim 3. For $0 \le i < h$ and $2 \le j \le r$, $\mathscr{G}(T_i)$ is *j*-wise (ij + (r-j)h + 1)-intersecting.

Proof. Suppose that $\mathscr{G}(T_i)$ is not *j*-wise *v*-intersecting, where v = ij + (r-j)h + 1. Then we can find $G_1, \ldots, G_j \in \mathscr{G}(T_i)$ such that $|G_1 \cap \cdots \cap G_j| < v$. Since \mathscr{G} is a shifted filter, we may assume that $G_1 \cap \cdots \cap G_j = [b+1, b+v-1]$. By shifting $(G_{\ell} \cup [b]) \setminus T_i \in \mathscr{G}$, we get $G'_{\ell} := (G_{\ell} \cup [b]) \setminus [b+1+(\ell-1)i, b+\ell i] \in \mathscr{G}$ for $1 \le \ell \le j$. Then, $G'_1 \cap \cdots \cap G'_j = [b] \cup [b+ij+1, b+v-1]$.

By the definition of *h* we have some $H \in \mathscr{G}$ such that $|H \cap [h+t-1]| = |H \cap [b]| = t-1$ and due to the shiftedness of \mathscr{G} we may assume that $H = [n] \setminus [t,b]$. By shifting *H*, we get $G'_{\ell} := [n] \setminus [b+ij+1+(\ell-1-j)h, b+ij+(\ell-j)h] \in \mathscr{G}$ for $j < \ell \le r$. Then, $G'_{j+1} \cap \cdots \cap G'_r = [n] \setminus [b+ij+1, b+v-1]$. Thus we have $G'_1 \cap \cdots \cap G'_r \cap H = [t-1]$, which contradicts the (r+1)-wise *t*-intersecting property of \mathscr{G} .

Claim 4. If $\mathscr{G} \subset \mathscr{G}_h(n, r+1, t)$ then $w_p(\mathscr{G}) < (1-\gamma)p^t$.

Proof. Let $1 \le i \le h$ and set $\mathscr{G}_i = \mathscr{G}_i(n, r+1, t)$. We are going to compare

$$w_p(\mathscr{G}_i \setminus \mathscr{G}_{i-1}) = \binom{t + (r+1)(i-1)}{i} p^{t+ri} q^i$$

and

$$w_p(\mathscr{G}_{i-1} \setminus \mathscr{G}_i) = \sum_{j=\max\{0,i-r\}}^{i-1} \binom{t+(r+1)(i-1)}{j} \sum_{\ell=i+1-j}^{r+1} \binom{r+1}{\ell} p^{t+(r+1)i-j-\ell} q^{j+\ell}.$$

For the latter, by choosing j = i - 1, we have

$$w_p(\mathscr{G}_{i-1} \setminus \mathscr{G}_i) \ge {\binom{t+(r+1)(i-1)}{i-1}} p^{t+ri-r} q^{i-1} \sum_{\ell=2}^{r+1} {\binom{r+1}{\ell}} p^{r+1-\ell} q^{+\ell} = {\binom{t+(r+1)(i-1)}{i-1}} p^{t+ri-r} q^{i-1} (1-p^{r+1}-(r+1)p^r q).$$

Thus,

$$\frac{w_p(\mathscr{G}_{i-1} \setminus \mathscr{G}_i)}{w_p(\mathscr{G}_i \setminus \mathscr{G}_{i-1})} \ge \frac{i}{t+r(i-1)} (p^{-r}q^{-1} - pq^{-1} - (r+1)).$$

The RHS is more than 1 iff

$$t < ip^{-r}/q + r - (2r+1)i - p/q.$$
(17)

- THE PRINCIPAL CASE

Using $t \leq T_{p,r+1} = p^{-r}/q - \log r$, we can verify (17) for $i \geq 2$ and r large enough, say, $p^{-r} > 2rhq$. Thus we have $\max\{w_p(\mathscr{G}_0), w_p(\mathscr{G}_1)\} > w_p(\mathscr{G}_2) > \cdots > w_p(\mathscr{G}_h)$.

Suppose that $\mathscr{G} \subset \mathscr{G}_h$. Since $\mathscr{G} \not\subset \mathscr{G}_1$ is an assumption of Lemma 8, we may assume that $h \ge 2$. Then we have $w_p(\mathscr{G}) \le w_p(\mathscr{G}_h) \le w_p(\mathscr{G}_2)$. A direct computation using $t \le T_{p,r+1} < p^{-r}/q$ shows that $\lim_{r\to\infty} w_p(\mathscr{G}_2) \le p^t/2$. Thus, for sufficiently large r, we can find some $\gamma \in (0,1)$ satisfying $w_p(\mathscr{G}) < (1-\gamma)p^t$.

So, we may assume that $\mathscr{G} \not\subset \mathscr{G}_h(n, r+1, t)$.

Claim 5. If $\mathscr{G} \not\subset \mathscr{G}_h(n, r+1, t)$ then $\mathscr{G}(T_h)$ is r-wise (rh+2)-intersecting.

Proof. Suppose that $\mathscr{G}(T_h)$ is not *r*-wise (rh+2)-intersecting. Then we can find $G_1, \ldots, G_r \in \mathscr{G}(T_h)$ such that $G_1 \cap \cdots \cap G_r = [b+1, b+rh+1] = [t+h, t+(r+1)h]$. By shifting $(G_{\ell} \cup [b]) \setminus T_h \in \mathscr{G}$ we get $G'_{\ell} := (G_{\ell} \cup [b]) \setminus [t+(\ell-1)h, t+\ell h-1] \in \mathscr{G}$ for $1 \le \ell \le r$. Then, $G'_1 \cap \cdots \cap G'_r = [t-1] \cup [t+rh, t+(r+1)h]$. Since $\mathscr{G} \not\subset \mathscr{G}_h(n, r+1, t)$ we have $G'_{r+1} := [n] \setminus [t+rh, t+(r+1)h] \in \mathscr{G}$. Thus, we have $G'_1 \cap \cdots \cap G'_{r+1} = [t-1]$, which contradicts the (r+1)-wise *t*-intersecting property of \mathscr{G} . □

Let $0 \le i < h$. By Claim 3, $\mathscr{G}(T_i)$ is $\lfloor \frac{r}{2} \rfloor$ -wise *u*-intersecting, where $u = \lfloor \frac{r}{2} \rfloor i + \lceil \frac{r}{2} \rceil h + 1$. By Lemma 5 we have $w_p(\mathscr{G}(T_i) : [b+1,n]) \le w^0(n-b,p,\lfloor \frac{r}{2} \rfloor, u) \le p^u$ if $u \le a_{\lfloor r/2 \rfloor}$. In fact, we can choose $r \ge r_0(p)$ so that $u \le a_{\lfloor r/2 \rfloor}$, because $u \le rh+1 < rs_0+1$ (by Lemma 2) and $rs_0+1 < a_{\lfloor r/2 \rfloor}$ (by (15), (7) and (5)). Using $t \le T_{p,r+1} = p^{-r}/q - \log r$ and $\binom{b}{i} < (t+h)^i < (t+s_0)^i < (p^{-r}/q)^i$ for $r > r_0(p)$, we have

$$\binom{b}{i}p^{b-i}q^{i}w_{p}(\mathscr{G}(T_{i}):[b+1,n]) < (p^{-r}/q)^{i}p^{b-i}q^{i}p^{u} \le p^{t+(1+\frac{r}{2})(h-i)} < p^{t+\frac{r}{2}}.$$
 (18)

By Claim 5, $\mathscr{G}(T_h)$ is *r*-wise (rh+2)-intersecting. Thus, by choosing *r* large enough so that $rh+2 < a_r$, Lemma 5 gives

$$\binom{b}{h}p^{b-h}q^{h}w_{p}(\mathscr{G}(T_{h}):[b+1,n]) < (p^{-r}/q)^{h}p^{t-1}q^{h}p^{rh+2} = p^{t+1}.$$
(19)

By (16), (18), (19) we have $w_p(\mathscr{G}) \leq hp^{t+\frac{r}{2}} + p^{t+1} = p^t(hp^{r/2} + p) < (1 - \gamma)p^t$ by choosing *r* sufficiently large so that $hp^{r/2} < s_0p^{r/2} \ll q$. This completes the proof of Lemma 8 and Theorem 4.

4. PROOF OF THEOREM 3

Assume the negation of Theorem 3. Then the statement starts with

$$\exists p \,\forall r_0 \,\underline{\exists r} \,\underline{\exists t} \,\forall \gamma \,\forall \varepsilon \,\forall n_0 \,\underline{\exists n} \,\underline{\exists k} \,\cdots,$$
(20)

where the underlines will indicate the choice of parameters described below. We will construct a counterexample to Theorem 4 using (20). Recall that Theorem 4 starts with

$$\forall p \ \underline{\exists r_0} \ \forall r \ \forall t \ \exists \gamma \ \underline{\exists \varepsilon} \ \cdots .$$
(21)

First, assuming the negation of Theorem 3, there exists some $p \in (0, 1)$ (corresponding to the first underline in (20)) such that the rest of Theorem 3 does not hold. For this p, Theorem 4 provides some r_0 (corresponding to the first underline in (21)) such that the rest

of Theorem 4 holds. With this r_0 , the negation of Theorem 3 provides some $r > r_0$ and $1 \le t \le T_{r,p}$ (the second and third underlines in (20)) such that the rest of Theorem 3 does not hold. With this r and t, Theorem 4 provides some $\gamma_0 = \gamma_0(p, r, t)$ and $\varepsilon_0 = \varepsilon_0(p, r, t)$ such that

$$w^{1}(n,\tilde{p},r,t) < (1-\gamma_{0})f(\tilde{p})$$
 (22)

holds for all \tilde{p} with $|\tilde{p}-p| \leq \varepsilon_0$, and all $n \geq t+r$, where $f(\tilde{p}) := \max\{g_0(\tilde{p},r,t), g_1(\tilde{p},r,t)\}$.

For reals 0 < b < a we write $a \pm b$ to mean the open interval (a-b, a+b). We note that $f(\tilde{p})$ is a uniformly continuous function of \tilde{p} on $p \pm \varepsilon_0$. Let $\gamma = \frac{\gamma_0}{4}$, $\varepsilon = \frac{\varepsilon_0}{2}$, and $I = p \pm \varepsilon$. Now we are going to define n_0 . Choose $\varepsilon_1 \ll \varepsilon$ so that

$$(1-3\gamma)f(\tilde{p}) > (1-4\gamma)f(\tilde{p}+\delta)$$
(23)

holds for all $\tilde{p} \in I$ and all $0 < \delta \le \varepsilon_1$. As the binomial distribution B(n, p) is concentrated around *pn*, we can choose n_1 so that

$$\sum_{i \in J} {n \choose i} p_0^i (1 - p_0)^{n-i} > (1 - 3\gamma) / (1 - 2\gamma)$$
(24)

holds for all $n > n_1$ and all $p_0 \in I_0 := p \pm \frac{3\varepsilon}{2}$, where $J = ((p_0 - \varepsilon_1)n, (p_0 + \varepsilon_1)n) \cap \mathbb{N}$. A little calculation shows that we can choose n_2 so that

$$(1-\gamma)\max\{|\mathscr{F}_0(n,k,r,t)|,|\mathscr{F}_1(n,k,r,t)|\} > (1-2\gamma)f(k/n)\binom{n}{k}$$
(25)

holds for all $n > n_2$ and k with $k/n \in I$. Finally set $n_0 = \max\{n_1, n_2\}$.

We plug these γ, ε and n_0 into (20). Then the negation of Theorem 3 gives us some n, k and $\mathscr{F} \in \mathbf{Y}^1(n, k, r, t)$ with $|\mathscr{F}| \ge (1 - \gamma) \max\{|\mathscr{F}_0(n, k, r, t)|, |\mathscr{F}_1(n, k, r, t)|\}$, where $n > n_0$ and $\frac{k}{n} \in I$. We fix n, k and \mathscr{F} , and let $\tilde{p} = \frac{k}{n}$. By (25) we have $|\mathscr{F}| > c\binom{n}{k}$, where $c = (1 - 2\gamma)f(\tilde{p})$. Let $\mathscr{G} = \bigcup_{k \le i \le n} (\nabla_i(\mathscr{F})) \in \mathbf{X}^1(n, r, t)$ be the collection of all upper shadows of \mathscr{F} , where $\nabla_i(\mathscr{F}) = \{H \in \binom{[n]}{i} : H \supset \exists F \in \mathscr{F}\}$. Let $p_0 = \tilde{p} + \varepsilon_1 \in I_0$.

Claim 6. $|\nabla_i(\mathscr{F})| \ge c\binom{n}{i}$ for $i \in J$.

Proof. Choose a real $x \le n$ so that $c\binom{n}{k} = \binom{x}{n-k}$. Since $|\mathscr{F}| > c\binom{n}{k} = \binom{x}{n-k}$ the Kruskal–Katona Theorem [20, 19] implies that $|\nabla_i(\mathscr{F})| \ge \binom{x}{n-i}$. Thus it suffices to show that $\binom{x}{n-i} \ge c\binom{n}{i}$, or equivalently,

$$\frac{\binom{x}{n-i}}{\binom{x}{n-k}} \ge \frac{c\binom{n}{i}}{c\binom{n}{k}}.$$

Using $i \ge k$ this is equivalent to $i \cdots (k+1) \ge (x-n+i) \cdots (x-n+k+1)$, which follows from $x \le n$.

By the claim we have

$$w_{p_0}(\mathscr{G}) \ge \sum_{i \in J} |\nabla_i(\mathscr{F})| \, p_0^i (1 - p_0)^{n-i} \ge c \sum_{i \in J} \binom{n}{i} p_0^i (1 - p_0)^{n-i}.$$
(26)

Using (24) and (23), the RHS of (26) is more than

$$c(1-3\gamma)/(1-2\gamma) = (1-3\gamma)f(\tilde{p}) > (1-4\gamma)f(\tilde{p}+\varepsilon_1) = (1-\gamma_0)f(p_0).$$

This means $w_{p_0}(\mathscr{G}) > (1 - \gamma_0) f(p_0)$ which contradicts (22) because $p_0 \in I_0 \subset p \pm \varepsilon_0$. \Box

ACKNOWLEDGMENT

The author thanks the referees for their careful reading and many helpful suggestions.

REFERENCES

- R. Ahlswede, L.H. Khachatrian. The complete nontrivial-intersection theorem for systems of finite sets. J. Combin. Theory (A), 76:121-138, 1996.
- [2] R. Ahlswede, L.H. Khachatrian. The complete intersection theorem for systems of finite sets. *European J. Combin.*, 18:125–136, 1997.
- [3] R. Ahlswede, L.H. Khachatrian. The diametric theorem in Hamming spaces Optimal anticodes. *Adv. in Appl. Math.*, 20:429–449, 1998.
- [4] A. Brace, D. E. Daykin. A finite set covering theorem. Bull. Austral. Math. Soc., 5:197–202, 1971.
- [5] C. Bey, K. Engel. Old and new results for the weighted *t*-intersection problem via AK-methods. *Numbers, Information and Complexity, Althofer, Ingo, Eds. et al., Dordrecht*, Kluwer Academic Publishers, 45–74, 2000.
- [6] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313–320, 1961.
- [7] I. Dinur, S. Safra. On the Hardness of Approximating Minimum Vertex-Cover. Annals of Mathematics, 162:439-485, 2005.
- [8] P. Frankl. On Sperner families satisfying an additional condition. J. Combin. Theory (A), 20:1–11, 1976.
- [9] P. Frankl. The Erdős–Ko–Rado theorem is true for *n* = *ckt*. *Combinatorics (Proc. Fifth Hungarian Colloq., Keszthey, 1976), Vol. I*, 365–375, Colloq. math. Soc. János Bolyai, 18, North–Holland, 1978.
- [10] P. Frankl. On intersecting families of finite sets. J. Combin. Theory (A), 24:141–161, 1978.
- [11] P. Frankl. Multiply-intersecting families. J. Combin. Theory (B), 53:195–234, 1991.
- [12] P. Frankl, N. Tokushige. Weighted 3-wise 2-intersecting families. J. Combin. Theory (A) 100:94–115, 2002.
- [13] P. Frankl, N. Tokushige. Weighted multiply intersecting families. *Studia Sci. Math. Hungarica* 40:287–291, 2003.
- [14] P. Frankl, N. Tokushige. Random walks and multiply intersecting families. J. Combin. Theory (A), 109:121-134, 2005.
- [15] P. Frankl, N. Tokushige. Weighted non-trivial multiply intersecting families. *Combinatorica*, 26 37–46, 2006.
- [16] E. Friedgut. On the measure of intersecting families, uniqueness and stability, to appear in Combinatorica.
- [17] A. J. W. Hilton, E. C. Milner. Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford, 18:369–384, 1967.
- [18] G.O.H. Katona. Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hung., 15:329– 337, 1964.
- [19] G.O.H. Katona. A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966 (Akademiai Kiadó, 1968) 187–207.
- [20] J.B. Kruskal. The number of simplices in a complex, in: Math. Opt. Techniques (Univ. of Calif. Press, 1963) 251–278.
- [21] D. Mubayi. An intersection theorem for four sets. Advances in Mathematics 215:601–615, 2007.
- [22] N. Tokushige. Intersecting families uniform versus weighted. Ryukyu Math. J., 18:89–103, 2005.
- [23] N. Tokushige. Extending the Erdős–Ko–Rado theorem. J. Combin. Designs, 14:52–55, 2006.
- [24] N. Tokushige. The maximum size of 3-wise *t*-intersecting families. *European J. Combin*, 28:152–166, 2007.
- [25] N. Tokushige. EKR type inequalities for 4-wise intersecting families. J. Combin. Theory (A), 114:575– 596, 2007.
- [26] N. Tokushige. Multiply-intersecting families revisited. J. Combin. Theory (B), 97:929–948, 2007.

- [27] N. Tokushige. Brace–Daykin type inequalities for intersecting families. *European J. Combin*, 29:273-285, 2008.
- [28] N. Tokushige. The random walk method for intersecting families. in *Horizons of combinatorics*, Bolyai society mathematical studies 17:215–224, 2008.
- [29] R.M. Wilson. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica, 4:247-257, 1984.

COLLEGE OF EDUCATION, RYUKYU UNIVERSITY, NISHIHARA, OKINAWA, 903-0213 JAPAN *E-mail address*: hide@edu.u-ryukyu.ac.jp

12