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ABSTRACT. Letm(n,k, r, t) be the maximum size ofF ⊂
([n]

k

)
satisfying|F1∩·· ·∩Fr | ≥ t

for all F1, . . . ,Fr ∈ F . We prove that for everyp∈ (0,1) there is somer0 such that, for all
r > r0 and allt with 1≤ t ≤ ⌊(p1−r − p)/(1− p)⌋− r, there existsn0 so that ifn > n0 and
p = k/n, thenm(n,k, r, t) =

(n−t
k−t

)
. The upper bound fort is tight for fixedp andr.

1. INTRODUCTION

Let n,k, r and t be positive integers, and let[n] = {1,2, . . . ,n}. A family G ⊂ 2[n] is
calledr-wiset-intersecting if|G1∩·· ·∩Gr | ≥ t holds for allG1, . . . ,Gr ∈ G . Let us define
a typical r-wise t-intersecting familyGi(n, r, t) and itsk-uniform subfamilyFi(n,k, r, t),
where 0≤ i ≤ ⌊n−t

r ⌋, as follows:

Gi(n, r, t) = {G⊂ [n] : |G∩ [t + ri ]| ≥ t +(r −1)i},

Fi(n,k, r, t) = Gi(n, r, t)∩
([n]

k

)
.

Two familiesG ,G ′ ⊂ 2[n] are said to be isomorphic, and denoted byG ∼= G ′, if there exists
a vertex permutationτ on [n] such thatG ′ = {{τ(g) : g∈ G} : G∈ G }.

Let m(n,k, r, t) be the maximum size ofk-uniform r-wise t-intersecting families onn
vertices. To determinem(n,k, r, t) is one of the oldest problems in extremal set theory,
which is still widely open. The caser = 2 was observed by Erdős, Ko and Rado [6],
Frankl [9], Wilson [29], and thenm(n,k,2, t) = maxi |Fi(n,k,2, t)| was finally proved by
Ahlswede and Khachatrian [2]. Frankl [8] showedm(n,k, r,1) = |F0(n,k, r,1)| if (r −
1)n≥ rk. Partial results for the casesr ≥ 3 andt ≥ 2 are found in [12, 14, 22, 23, 24, 25,
26, 28]. All known results suggest

m(n,k, r, t) = max
i

|Fi(n,k, r, t)|.

In this paper, we will consider the principal case, namely, the case when the maximum is
attained byF0(n,k, r, t). For fixedp = k/n∈ (0,1), r andt, a computation shows that

lim
n→∞

|F1(n,k, r, t)|/|F0(n,k, r, t)| ≤ 1 iff 1 ≤ t ≤ (p1−r − p)/(1− p)− r =: tp,r . (1)

To consider the interval fort including{1,2, . . . ,⌊tp,r⌋} let us defineTp,r (> tp,r) by

Tp,r = p1−r/(1− p)− logr. (2)

Date: March 19, 2009, 11:01am.
2000Mathematics Subject Classification.Primary: 05D05 Secondary: 05C65.
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Then we can state a generalized Erdős–Ko–Rado theorem forr-wiset-intersecting families
as follows.

Theorem 1. For all p ∈ (0,1) there exists r0 such that the following holds. For all r> r0
and all t with1≤ t ≤ Tp,r , there exist positive constantsε,n0 such that

m(n,k, r, t) = max{|F0(n,k, r, t)|, |F1(n,k, r, t)|}

holds for all n> n0 and k with| k
n − p| < ε. Moreover,F0(n,k, r, t) andF1(n,k, r, t) are

the only optimal families (up to isomorphism).

Now we introduce thep-weight version of the Erd̋os–Ko–Rado theorem. Throughout
this paper,p andq= 1− p denote positive real numbers. ForX ⊂ [n] and a familyG ⊂ 2X

we define thep-weight ofG , denoted bywp(G : X), as follows:

wp(G : X) = ∑
G∈G

p|G|q|X|−|G| =
|X|

∑
i=0

∣∣∣G ∩
(X

i

)∣∣∣ piq|X|−i .

We simply writewp(G ) for the caseX = [n]; for example, we havewp(2[n]) = 1 and
wp(G0(n, r, t)) = pt . A direct computation shows that thep-weight ofGi(n, r, t) is indepen-
dent ofn for n≥ t + ri . So let

gi(p, r, t) = wp(Gi(n, r, t)).

Let w(n, p, r, t) be the maximump-weight ofr-wiset-intersecting families onn vertices.
It might be natural to expect

w(n, p, r, t) = max
i

wp(Gi(n, r, t)) = max
i

gi(p, r, t).

Ahlswede and Khachatrian proved that this is true forr = 2 in [3] (cf. [5, 7, 22]). This
includes the Katona theorem [18] aboutw(n,1/2,2, t). It is shown in [13] that

w(n, p, r,1) = p for p≤ (r −1)/r. (3)

We can check thatg0(p, r, t)≥ g1(p, r, t) iff 1 ≤ t ≤ tp,r cf. (1). In [11], Frankl considered
the casep = 1/2 and provedw(n, p, r, t) = pt for 1≤ t ≤ tp,r = 2r − r −1. This result was
extended for the case|p−1/2| < ε in [26]. In this paper we will generalize these results
from p≈ 1/2 to any givenp∈ (0,1) as follows.

Theorem 2. For all p ∈ (0,1) there exists r0 such that for all r> r0, all t with 1≤ t ≤ Tp,r ,
and all n≥ t + r, we have

w(n, p, r, t) = max{g0(p, r, t),g1(p, r, t)}.

Moreover,G0(n, r, t) andG1(n, r, t) are the only optimal families (up to isomorphism).

We will deduce Theorems 1 and 2 from slightly stronger, stability type results (cf. [16,
21]). To state our main results let us define some collections of families as follows. For
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0≤ i ≤ ⌊(n− t)/r⌋ (but we will actually need the casei = 0,1 only), let

G(n, r, t) = {G ⊂ 2[n] : G is r-wiset-intersecting},

Gi(n, r, t) = {G ⊂ 2[n] : G ⊂ G ′ for someG ′ ∼= Gi(n, r, t)},
X i(n, r, t) = G(n, r, t)\

⋃
0≤ j≤i G j(n, r, t),

Y i(n,k, r, t) = {F ⊂
([n]

k

)
: F ∈ X i(n, r, t)},

and finally let us define

mi(n,k, r, t) = max{|F | : F ∈ Y i(n,k, r, t)},
wi(n, p, r, t) = max{wp(G ) : G ∈ X i(n, r, t)}.

Ahlswede and Khachatrian [1] determinedm0(n,k,2, t) completely, extending the ear-
lier results by Hilton and Milner [17] and Frankl [10]. Brace and Daykin [4] determined
w0(n,1/2, r,1) and Frankl [11] determinedw0(n,1/2, r, t) for r ≥ 5 and 1≤ t ≤ 2r − r −1.
More partial results form1(n,k, r, t) with k/n ≈ 1/2 andw1(n, p, r, t) with p ≈ 1/2 are
found in [15, 26, 27]. Our main results are the following.

Theorem 3. For all p ∈ (0,1) there exists r0 such that the following holds. For all r> r0
and all t with1≤ t ≤ Tp,r , there exist positive constantsγ,ε,n0 such that

m1(n,k, r, t) < (1− γ)max{|F0(n,k, r, t))|, |F1(n,k, r, t))|}
holds for all n> n0 and k with| k

n − p| < ε.

Theorem 4. For all p ∈ (0,1) there exists r0 such that the following holds. For all r> r0
and all t with1≤ t ≤ Tp,r , there exist there exist positive constantsγ,ε such that

w1(n, p̃, r, t) < (1− γ)max{g0(p̃, r, t),g1(p̃, r, t)} (4)

holds for all n with n≥ t + r and all p̃ with |p̃− p| < ε.

The conditionr > r0 is necessary in the above theorems. To see this, we give an example
which violates (4). Letr < 1/(1− p), or equivalently,p > 1− 1

r . Consider a family
G = {G ⊂ [n] : |G| ≥ (1− 1

r )n+ t
r }. Then one can check thatG ∈ X1(n, r, t). As the

binomial distributionB(n, p) is concentrated aroundpn, we see that limn→∞ wp(G ) = 1.
Thus, (4) fails even ifγ = 0.

Theorem 3 and Theorem 4 immediately imply Theorem 1 and Theorem 2, respectively.
We first prove Theorem 4 in Section 3. Our proof technique is largely based on [11, 26].
Then we deduce Theorem 3 from Theorem 4 in Section 4. We prepare some tools in
Section 2.

In our proof of the theorems, we will make no effort to reduce the value ofr0. Instead,
we try to give a simpler proof assumingr0 large enough. Our proof admits to replace logr
in (2) with any functionf (r) satisfying f (r) → +∞ asr → +∞.

2. TOOLS

2.1. Some inequalities.Let p,q∈ (0,1) with p+q = 1. We consider the situation thatr
is large enough for fixedp, and we always assume thatqr > 1. In this case, the equation
qxr −x+ p= 0 has unique rootαr,p in the interval(p,1). In fact, lettingf (x) = qxr −x+ p,
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one can check thatf (0) = p > 0, f (1) = 0. Also f ′(x) = qrxr−1−1 has unique real zero
x = (qr)−1/(r−1) ∈ (0,1). We sometimes writeαr for αr,p omitting p if this makes no
confusion.

Lemma 1 ([27]). Let p, r, t0,c be fixed constants. Suppose that w(n, p, r, t0) ≤ c holds for
all n ≥ t0. Then we have w(n, p, r, t) ≤ cα t−t0

r,p for all t ≥ t0 and n≥ t. In particular, we
always have w(n, p, r, t) ≤ α t

r,p.

Lemma 2. X0(n, r, t) ⊂ X0(n, r −1, t +1) and w0(n, p, r, t) ≤ w0(n, p, r −1, t +1).

Proof. Let G ∈ X0(n, r, t). If G is not (r −1)-wise (t + 1)-intersecting, then we can find
G1, . . . ,Gr−1 ∈ G such that|G1∩ ·· · ∩Gr−1| = t. But G is r-wise t-intersecting and so
everyG ∈ G must containG1∩ ·· · ∩Gr−1. This meansG ̸∈ X0(n, r, t), a contradiction.
Thus,G ∈ G(n, r −1, t + 1). If G fixes t + 1 vertices, thenG ̸∈ X0(n, r, t). Therefore we
haveG ∈ X0(n, r −1, t +1). ¤

Lemma 3. For any i with0≤ i ≤ ⌊(n− t)/r⌋, we have wi(n+1, p, r, t) ≥ wi(n, p, r, t).

Proof. ChooseG ∈ X i(n, r, t) with wp(G ) = wi(n, p, r, t). ThenG ′ := G ∪{G∪{n+ 1} :
G ∈ G } ∈ X i(n+ 1, r, t) andwp(G ′ : [n+ 1]) = wp(G : [n])(q+ p) = wi(n, p, r, t), which
meanswi(n+1, p, r, t) ≥ wi(n, p, r, t). ¤

For a positive integeri and a realp∈ (0,1), let

ci := ci(p) = −i(p/q) logp. (5)

Lemma 4. For any positive integer i and any real p∈ (0,1) there exists r1 ∈ N such that
αy+i

r < py holds for all r≥ r1 and all y= dp−r with 0 < d ≤ ci .

Proof. Setα = αr andβ = 1/(y+ i). We want to show thatαy+i < py, that is,α < p1−iβ .
Let f (x) = qxr − x+ p. Since f (x) ≥ 0 for 0 < x ≤ α and f (x) < 0 for α < x < 1, it
suffices to show thatf (p1−iβ ) < 0, that is,

(q/p)p−iβ r < p−r(p−iβ −1). (6)

Noting thatp−iβ = exp(logp−iβ ) > 1+ log(p−iβ ) = 1− iβ logp, the RHS of (6) is more
than

p−r(−iβ logp) =
−ip−r logp

y+ i
=

−ip−r logp
dp−r + i

→ −i logp
d

asr → ∞.

On the other hand, the LHS of (6) is

(q/p)(p−i)
r

y+i = (q/p)(p−i)
r

dp−r+i → q/p asr → ∞.

Thus (6) holds for sufficiently larger if q/p≤−i(logp)/d, that is,d ≤ ci . ¤

Lemma 5. For all p ∈ (0,1) there exist r1 ∈ N and µ ∈ (0,1) such that the following
holds. For all r≥ r1 +1 and all t with1≤ t ≤ ⌊c1p(p−r − p−r1)/q⌋, where c1 is defined
by (5), and all n≥ t + r, it follows w0(n, p, r, t) ≤ µ pt .
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Proof. Chooser1 from Lemma 4 fori = 1. Forr ≥ r1 +1 definear by

ar = c1

r−1

∑
j=r1

p− j = c1p(p−r − p−r1)/q. (7)

Then we havear1+1 = c1p−r1 andar+1−ar = c1p−r for r ≥ r1 +1.
Let r ≥ r1+1. We will showw0(n, p, r, t)≤ µ pt for all t with 1≤ t ≤⌊ar⌋, andn≥ r +t,

by induction onr. For the base caser = r1 +1, by Lemmas 2 and 1, we have

w0(n, p, r1 +1, t) ≤ w0(n, p, r1, t +1) ≤ α t+1
r1

.

Then using Lemma 4 fory = t andi = 1, we haveα t+1
r1

< pt for t ≤ c1p−r1 = ar1+1. Let
µ = max{αr1(αr1/p)t : 1 ≤ t ≤ ⌊ar1+1⌋}. The maximum is attained whent = ⌊ar1+1⌋.
This µ = µ(p) ∈ (0,1) satisfiesw0(n, p, r1 +1, t) ≤ µ pt for all 1≤ t ≤ ⌊ar1+1⌋.

For the induction step, Lemmas 2 and 1 imply that

w0(n, p, r +1, t) ≤ w0(n, p, r, t +1) ≤ w0(n, p, r,⌊ar⌋)α t+1−⌊ar⌋
r .

Using the induction hypothesisw0(n, p, r,⌊ar⌋) ≤ µ p⌊ar⌋, we have

w0(n, p, r +1, t) ≤ µ p⌊ar⌋α t+1−⌊ar⌋
r ≤ µ par α t+1−ar

r .

The RHS is at mostµ pt iff α(t−ar )+1
r ≤ pt−ar . Applying Lemma 4 fory= t−ar andi = 1,

this is true ift −ar ≤ c1p−r , that is,t ≤ ar +c1p−r = ar+1. ¤

2.2. Shifting. For integers 1≤ i < j ≤ n and a familyG ⊂ 2[n], we define the(i, j)-shift
σi j as follows:

σi j (G ) = {σi j (G) : G∈ G },
where

σi j (G) =
{

(G−{ j})∪{i} if i ̸∈ G, j ∈ G, (G−{ j})∪{i} ̸∈ G ,
G otherwise.

A family G ⊂ 2[n] is calledshiftedif σi j (G ) = G for all 1≤ i < j ≤ n, andG is calledtame
if it is shifted and

⋂
G = /0. If G is r-wiset-intersecting, then so isσi j (G ). We notice that

G ∈ X0(n, r, t) does not necessarily implyσi j (G ) ∈ X0(n, r, t), becauseσi j (G ) may fix t
vertices.

Lemma 6. If G ∈X0(n, r, t) is p-weight maximum, then we can find a tameG ′ ∈X0(n, r, t)
with wp(G ′) = wp(G ).

Proof. If G ∈ X0(n, r, t) thenG ∈ X0(n, r −1, t + 1) by Lemma 2. We apply all possible
shifting operations toG to get a shifted familyG ′ ∈ G(n, r, t) ⊂ G(n, r −1, t + 1). Since
each shifting operation preserves thep-weight, we havewp(G ) = wp(G ′).

We have to show that
⋂

G ′ = /0. Otherwise we may assume that 1∈
⋂

G ′ andH =
[2,n] ̸∈ G ′. SinceG ′ is p-weight maximum we can findG1, . . . ,Gr−1 ∈ G ′ such that|G1∩
·· ·∩Gr−1∩H| < t. Then we have|G1∩·· ·∩Gr−1| < t +1, which is a contradiction. ¤

A family G ⊂ 2[n] is called afilter if it is closed upwards: ifG ∈ G andG ⊂ G′ then
G′ ∈ G . If G is a filter, then so isσi j (G ). We also notice that ifG ∈ X0(n, r, t) is p-weight
maximum thenG is necessarily a filter.
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3. PROOF OFTHEOREM 4

We start with the following simple observation.

Claim 1. LetG ∈X1(n, r, t) be fixed, and let f(p) := max{g0(p, r, t),g1(p, r, t)}. If wp(G )<
f (p) for some p, then there existγ,ε > 0 such that w̃p(G ) < (1−γ) f (p̃) for all |p̃−p|< ε.

This is because bothwp(G ) and f (p) are continuous functions of variablep. So, to
prove Theorem 4, it is enough to show thatwp(G ) < f (p) for given p andG ∈ X1(n, r, t)
providedr ≥ r0, 1≤ t ≤ Tp,r .

The actual proof goes as follows. LetG ∈ X1(n, r, t) be p-weight maximum. Choose a
tameG ∗ ∈ X0(n, r, t) with wp(G ∗) = wp(G ) by Lemma 6. Then we will show the follow-
ing.

Case 1. IfG ∗ ⊂ G1(n, r, t) thenwp(G ∗) < (1− γ)g1(p, r, t).
Case 2. IfG ∗ ̸⊂ G1(n, r, t) thenwp(G ∗) < (1− γ)g0(p, r, t).
In the proof, after havingp, r andt, we may assume thatn is large enough by Lemma 3.

For Case 1, we show the following.

Lemma 7. For all p ∈ (0,1), r ≥ 2+ 1/q, t with 1 ≤ t ≤ Tp,r+1, and all n≥ t + r, the
following holds. LetG ∈X1(n, r, t) be p-weight maximum and letG ∗ ∈X0(n, r, t) be a tame
family obtained by shifting fromG . If G ∗ ⊂ G1(n, r, t) then wp(G ∗) ≤ (1− γ)g1(p, r, t),
whereγ = q

(r−2)(
t+r

p + 1
q)−1.

Proof of Lemma 7.Let p, r, t,n be given. SetG1 = G1(n, r, t). Let G ′ ∈ X1(n, r, t) be p-
weight maximum. Note thatG ′ is not necessarily shifted. By Lemma 6 we can find
a tameG ∗ ∈ X0(n, r, t) in a sequence of shiftingG ′ → ··· → G ∗ with wp(G ′) = · · · =
wp(G ∗). Suppose thatG ∗ ⊂ G1. Then we find someG ∈ G(n, r, t) in the sequence such
thatG ̸⊂ G1 andσxy(G ) ⊂ G1, where we may assume thatx = t + r, y = x+ 1. We note
that |[x]∩G| ≥ x−2 for all G ∈ G . Moreover, if|[x]∩G| = x−2 thenG∩{x,y} = {y}
and(G−{y})∪{x} ̸∈ G .

For i ∈ [x] setG (i) = {G ∈ G : [y] \G = {i}}, and for j ∈ [x− 1] andz∈ {x,y} let
Gz( j) = {G∈ G : [y]\G = { j,z}}, Hz( j) = {G\ [y] : G∈ Gz( j)}. Sinceσxy(G ) ⊂ G1 we
haveHx( j)∩Hy( j) = /0 and sowp(Gx( j))+wp(Gy( j))≤ px−1q2. SetG /0 = {G∈ G : [x]⊂
G}, Gxy = {G∈ G : G∩ [y] = [x−1]}, and lete= mini∈[x] wp(G (i)). Then we have

wp(G ) = ∑
i∈[x]

wp(G (i))+ ∑
j∈[x−1]

(
wp(Gx( j))+wp(Gy( j))

)
+wp(G /0)+wp(Gxy) (8)

≤ e+(x−1)pxq+(x−1)px−1q2 + px + px−1q2 = e+(η −1)pxq, (9)

whereη = x
p + 1

q. Note thate≤ pxq, and (9) coincides withwp(G1) = xpx−1q+ px = η pxq
iff e= pxq. If there is somej ∈ [x−1] such thatGx( j)∪Gy( j) = /0, then by (8) we get
wp(G ) ≤ wp(G1)− px−1q2 =

(
1− q/(η p)

)
wp(G1) = (1− (r − 2)γ)wp(G1), and we are

done. Thus we may assume that

Gx( j)∪Gy( j) ̸= /0 for all j ∈ [x−1]. (10)

To provewp(G ) ≤ (1− γ)wp(G1) by contradiction, let us assume that

wp(G ) > (1− γ)wp(G1) = (1− γ)η pxq. (11)
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By (9) and (11) we havee> (1−γη)pxq. This means, lettingH (i) = {G\ [y] : G∈ G (i)}
andY = [y+1,n], we have

wp(H (i) : Y) > 1− γη for all i ∈ [x]. (12)

SinceG ̸⊂ G1, both
⋃

j∈[x−1] Gx( j) and
⋃

j∈[x−1] Gy( j) are non-empty. Using this with (10),
we can chooseG ∈ Gx( j) and G′ ∈ Gy( j ′) with j ̸= j ′, say, j = x− 1, j ′ = x− 2. Let
L = [r −2] andH ∗ =

⋂
ℓ∈L H (ℓ). Then by (12) we have

wp(H ∗ : Y) > 1− (r −2)γη . (13)

If H ∗ ⊂ 2Y is not(r −2)-wise 1-intersecting, then we can findH1, . . . ,Hr−2 ∈ H ∗ such
that H1∩ ·· · ∩Hr−2 = /0. SettingGℓ = ([y] \ {ℓ})∪Hℓ ∈ G we have|G1∩ ·· · ∩Gr−2∩
G∩G′| = t −1, which contradicts ther-wise t-intersecting property ofG . ThusH ∗ is
(r −2)-wise 1-intersecting andwp(H ∗ : Y) ≤ p by (3), where we need(r −2)q≥ 1. But
this contradicts (13) because we choseγ so thatp = 1− (r −2)γη . This completes the
proof of Lemma 7. ¤

Next we consider Case 2. RenameG ∗ by G . Here, to make the proof notationally
simpler, we consider the caser + 1 instead of the caser. Then, it suffices to show the
following lemma for Case 2.

Lemma 8. For all p ∈ (0,1) there exists r0 such that the following holds. For all r> r0,
all t with 1≤ t ≤ Tp,r+1, there existsγ ∈ (0,1) such that for all n≥ t +(r +1) and all tame
G ∈ X0(n, r +1, t) with G ̸⊂ G1(n, r +1, t), it follows that wp(G ) < (1− γ)pt .

Proof of Lemma 8.Let p∈ (0,1) be given. We chooser0 = r0(p) sufficiently large, which
will be specified in the proof. Then, letr > r0 and 1≤ t ≤ Tp,r+1 be given. We choose
γ = γ(p, r, t) ∈ (0,1) close enough to 1, and the closeness will be specified in the proof.
Finally letG ∈ X0(n, r +1, t) be given withG ̸⊂ G1(n, r +1, t), wheren≥ t +(r +1).

Let t(i) = max{ j : G is i-wise j-intersecting}. We may assume thatt(r+1) = t andG
is p-weight maximum among all tameG ∈ X0(n, r + 1, t) with G ̸⊂ G1(n, r + 1, t). Let
t(r) = t +s. We haves≥ 1 by Lemma 2. Chooser1 from Lemma 5. Using Lemma 1 with
Lemma 5, we have

wp(G ) ≤ w0(n, p, r, t +s) ≤ w0(n, p, r,⌊ar⌋)α(t+s)−⌊ar⌋
r ≤ µ par α(t+s)−ar

r ,

for someµ = µ(p) ∈ (0,1), wherear is defined in (7). We want to show the RHS is at
mostµ pt , or equivalently,α t−ar+s

r ≤ pt−ar . Choosingr sufficiently large, that is,r > r1,
this is true ift−ar ≤ csp−r by Lemma 4. Thus we get the desired inequalitywp(G )≤ µ pt

if
(t ≤)Tp,r+1 ≤ csp−r +ar . (14)

The LHS isTp,r+1 = p−r/q− logr, while the RHS is

csp−r +ar = sc1p−r +ar = c1p−r(s+ p/q)−c1p1−r1/q.

We chooser > r0 ≫ r1 so that− logr < −c1p1−r1/q = (p2−r1/q) logp. Then we have
(14) if p−r/q≤ c1p−r(s+ p/q), that is,−p(logp)(s+ p/q) ≥ 1. This is true if

s≥ s0 := (−plogp)−1− p/q. (15)
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So we may assume that 1≤ s< s0. After [11] leth= min{i : |G∩ [t + i]| ≥ t for all G∈G }.
This is the minimum size of “holes” in[t +h].

Claim 2. 1≤ h≤ s(< s0).

Proof. SinceG ∈ X0(n, r +1, t), we haveh≥ 1. By the definition ofsand the shiftedness
of G , we haveG1, . . . ,Gr ∈ G such thatG1 ∩ ·· · ∩Gr = [t + s]. Then it follows from
t(r+1) = t that|[t +s]∩G| ≥ t for all G∈ G , which implies,t +h≤ t +s. ¤

Let b = t +h−1 and letTi = [b+1− i,b] be the right-mosti-set in[b]. ForA⊂ [b] let

G (A) = {G∩ [b+1,n] : G∈ G , [b]\G = A}.

SinceG is shifted, we haveG (A) ⊂ G (Ti) for all A ∈
([b]

i

)
. Thus, for eachG ∈ G with

|[b]\G|= i, we can findG′ ∈G (Ti) such thatG= ([b]\G)∪G′. By considering the weight
of G on [b] and[b+1,n] separately, we have

wp(G ) ≤
h

∑
i=0

(b
i

)
pb−iqi wp(G (Ti) : [b+1,n]). (16)

Claim 3. For 0≤ i < h and2≤ j ≤ r, G (Ti) is j-wise(i j +(r − j)h+1)-intersecting.

Proof. Suppose thatG (Ti) is not j-wisev-intersecting, wherev = i j +(r − j)h+1. Then
we can findG1, . . . ,G j ∈ G (Ti) such that|G1∩ ·· · ∩G j | < v. SinceG is a shifted filter,
we may assume thatG1∩ ·· ·∩G j = [b+1,b+v−1]. By shifting (Gℓ∪ [b])\Ti ∈ G , we
get G′

ℓ := (Gℓ ∪ [b]) \ [b+ 1+(ℓ−1)i,b+ ℓi] ∈ G for 1 ≤ ℓ ≤ j. Then,G′
1∩ ·· · ∩G′

j =
[b]∪ [b+ i j +1,b+v−1].

By the definition ofh we have someH ∈ G such that|H ∩ [h+ t − 1]| = |H ∩ [b]| =
t −1 and due to the shiftedness ofG we may assume thatH = [n] \ [t,b]. By shifting H,
we getG′

ℓ := [n] \ [b+ i j + 1+(ℓ−1− j)h,b+ i j +(ℓ− j)h] ∈ G for j < ℓ ≤ r. Then,
G′

j+1∩ ·· · ∩G′
r = [n] \ [b+ i j + 1,b+ v−1]. Thus we haveG′

1∩ ·· · ∩G′
r ∩H = [t −1],

which contradicts the(r +1)-wiset-intersecting property ofG . ¤
Claim 4. If G ⊂ Gh(n, r +1, t) then wp(G ) < (1− γ)pt .

Proof. Let 1≤ i ≤ h and setGi = Gi(n, r +1, t). We are going to compare

wp(Gi \Gi−1) =
(t+(r+1)(i−1)

i

)
pt+ri qi

and

wp(Gi−1\Gi) = ∑i−1
j=max{0,i−r}

(t+(r+1)(i−1)
j

)
∑r+1

ℓ=i+1− j

(r+1
ℓ

)
pt+(r+1)i− j−ℓq j+ℓ.

For the latter, by choosingj = i−1, we have

wp(Gi−1\Gi) ≥
(t+(r+1)(i−1)

i−1

)
pt+ri−rqi−1∑r+1

ℓ=2

(r+1
ℓ

)
pr+1−ℓq+ℓ

=
(t+(r+1)(i−1)

i−1

)
pt+ri−rqi−1(1− pr+1− (r +1)prq).

Thus,
wp(Gi−1\Gi)
wp(Gi \Gi−1)

≥ i
t + r(i−1)

(p−rq−1− pq−1− (r +1)).
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The RHS is more than 1 iff

t < ip−r/q+ r − (2r +1)i− p/q. (17)

Using t ≤ Tp,r+1 = p−r/q− logr, we can verify (17) fori ≥ 2 andr large enough, say,
p−r > 2rhq. Thus we have max{wp(G0),wp(G1)} > wp(G2) > · · · > wp(Gh).

Suppose thatG ⊂ Gh. SinceG ̸⊂ G1 is an assumption of Lemma 8, we may assume that
h≥ 2. Then we havewp(G )≤wp(Gh)≤wp(G2). A direct computation usingt ≤ Tp,r+1 <
p−r/q shows that limr→∞ wp(G2) ≤ pt/2. Thus, for sufficiently larger, we can find some
γ ∈ (0,1) satisfyingwp(G ) < (1− γ)pt . ¤

So, we may assume thatG ̸⊂ Gh(n, r +1, t).

Claim 5. If G ̸⊂ Gh(n, r +1, t) thenG (Th) is r-wise(rh+2)-intersecting.

Proof. Suppose thatG (Th) is notr-wise(rh+2)-intersecting. Then we can findG1, . . . ,Gr ∈
G (Th) such thatG1 ∩ ·· · ∩Gr = [b+ 1,b+ rh + 1] = [t + h, t + (r + 1)h]. By shifting
(Gℓ ∪ [b]) \Th ∈ G we getG′

ℓ := (Gℓ ∪ [b]) \ [t +(ℓ−1)h, t + ℓh−1] ∈ G for 1 ≤ ℓ ≤ r.
Then,G′

1 ∩ ·· · ∩G′
r = [t − 1]∪ [t + rh, t + (r + 1)h]. SinceG ̸⊂ Gh(n, r + 1, t) we have

G′
r+1 := [n] \ [t + rh, t + (r + 1)h] ∈ G . Thus, we haveG′

1∩ ·· · ∩G′
r+1 = [t − 1], which

contradicts the(r +1)-wiset-intersecting property ofG . ¤
Let 0≤ i < h. By Claim 3,G (Ti) is ⌊ r

2⌋-wiseu-intersecting, whereu= ⌊ r
2⌋i +⌈ r

2⌉h+1.
By Lemma 5 we havewp(G (Ti) : [b+ 1,n]) ≤ w0(n−b, p,⌊ r

2⌋,u) ≤ pu if u ≤ a⌊r/2⌋. In
fact, we can chooser ≥ r0(p) so thatu≤ a⌊r/2⌋, becauseu≤ rh+1< rs0+1 (by Lemma 2)

andrs0 + 1 < a⌊r/2⌋ (by (15), (7) and (5)). Usingt ≤ Tp,r+1 = p−r/q− logr and
(b

i

)
<

(t +h)i < (t +s0)i < (p−r/q)i for r > r0(p), we have(b
i

)
pb−iqiwp(G (Ti) : [b+1,n]) < (p−r/q)i pb−iqi pu ≤ pt+(1+ r

2)(h−i) < pt+ r
2 . (18)

By Claim 5,G (Th) is r-wise (rh + 2)-intersecting. Thus, by choosingr large enough so
thatrh+2 < ar , Lemma 5 gives(b

h

)
pb−hqhwp(G (Th) : [b+1,n]) < (p−r/q)hpt−1qhprh+2 = pt+1. (19)

By (16), (18), (19) we havewp(G )≤ hpt+ r
2 + pt+1 = pt(hpr/2+ p) < (1−γ)pt by choos-

ing r sufficiently large so thathpr/2 < s0pr/2 ≪ q. This completes the proof of Lemma 8
and Theorem 4. ¤

4. PROOF OFTHEOREM 3

Assume the negation of Theorem 3. Then the statement starts with

∃p∀r0 ∃r ∃t ∀γ ∀ε ∀n0 ∃n∃k · · · , (20)

where the underlines will indicate the choice of parameters described below. We will
construct a counterexample to Theorem 4 using (20). Recall that Theorem 4 starts with

∀p∃r0 ∀r ∀t ∃γ ∃ε · · · . (21)

First, assuming the negation of Theorem 3, there exists somep∈ (0,1) (corresponding
to the first underline in (20)) such that the rest of Theorem 3 does not hold. For thisp,
Theorem 4 provides somer0 (corresponding to the first underline in (21)) such that the rest
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of Theorem 4 holds. With thisr0, the negation of Theorem 3 provides somer > r0 and
1≤ t ≤ Tr,p (the second and third underlines in (20)) such that the rest of Theorem 3 does
not hold. With thisr andt, Theorem 4 provides someγ0 = γ0(p, r, t) andε0 = ε0(p, r, t)
such that

w1(n, p̃, r, t) < (1− γ0) f (p̃) (22)

holds for allp̃with |p̃−p| ≤ ε0, and alln≥ t+r, wheref (p̃) := max{g0(p̃, r, t),g1(p̃, r, t)}.
For reals 0< b< a we writea±b to mean the open interval(a−b,a+b). We note that

f (p̃) is a uniformly continuous function of ˜p on p± ε0. Let γ = γ0
4 , ε = ε0

2 , andI = p± ε.
Now we are going to definen0. Chooseε1 ≪ ε so that

(1−3γ) f (p̃) > (1−4γ) f (p̃+δ ) (23)

holds for all p̃∈ I and all 0< δ ≤ ε1. As the binomial distributionB(n, p) is concentrated
aroundpn, we can choosen1 so that

∑
i∈J

(n
i

)
pi

0(1− p0)n−i > (1−3γ)/(1−2γ) (24)

holds for alln > n1 and allp0 ∈ I0 := p± 3ε
2 , whereJ = ((p0− ε1)n,(p0 + ε1)n)∩N. A

little calculation shows that we can choosen2 so that

(1− γ)max{|F0(n,k, r, t)|, |F1(n,k, r, t)|} > (1−2γ) f (k/n)
(n

k

)
(25)

holds for alln > n2 andk with k/n∈ I . Finally setn0 = max{n1,n2}.
We plug theseγ,ε andn0 into (20). Then the negation of Theorem 3 gives us some

n,k andF ∈ Y1(n,k, r, t) with |F | ≥ (1− γ)max{|F0(n,k, r, t)|, |F1(n,k, r, t)|}, where
n > n0 and k

n ∈ I . We fix n,k andF , and letp̃ = k
n. By (25) we have|F | > c

(n
k

)
, where

c = (1− 2γ) f (p̃). Let G =
⋃

k≤i≤n(∇i(F )) ∈ X1(n, r, t) be the collection of all upper

shadows ofF , where∇i(F ) = {H ∈
([n]

i

)
: H ⊃ ∃F ∈ F}. Let p0 = p̃+ ε1 ∈ I0.

Claim 6. |∇i(F )| ≥ c
(n

i

)
for i ∈ J.

Proof. Choose a realx≤ n so thatc
(n

k

)
=

( x
n−k

)
. Since|F | > c

(n
k

)
=

( x
n−k

)
the Kruskal–

Katona Theorem [20, 19] implies that|∇i(F )| ≥
( x

n−i

)
. Thus it suffices to show that( x

n−i

)
≥ c

(n
i

)
, or equivalently, ( x

n−i

)( x
n−k

) ≥
c
(n

i

)
c
(n

k

) .

Using i ≥ k this is equivalent toi · · ·(k+1) ≥ (x−n+ i) · · ·(x−n+k+1), which follows
from x≤ n. ¤

By the claim we have

wp0(G ) ≥ ∑
i∈J

|∇i(F )| pi
0(1− p0)n−i ≥ c∑

i∈J

(n
i

)
pi

0(1− p0)n−i . (26)

Using (24) and (23), the RHS of (26) is more than

c(1−3γ)/(1−2γ) = (1−3γ) f (p̃) > (1−4γ) f (p̃+ ε1) = (1− γ0) f (p0).

This meanswp0(G ) > (1− γ0) f (p0) which contradicts (22) becausep0 ∈ I0 ⊂ p±ε0. ¤
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