MULTIPLY-INTERSECTING FAMILIES REVISITED

NORIHIDE TOKUSHIGE

Abstract

Motivated by the Frankl's results in [11] ("Multiply-intersecting families," J. Combin. Theory (B) 1991), we consider some problems concerning the maximum size of multiply-intersecting families with additional conditions. Among other results, we show the following version of the Erdős-Ko-Rado theorem: for all $r \geq 8$ and $1 \leq t \leq$ $2^{r+1}-3 r-1$ there exist positive constants ε and n_{0} such that if $n>n_{0}$ and $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$ then r-wise t-intersecting k-uniform families on n vertices have size at most $\max \left\{\binom{n-t}{k-t},(t+\right.$ $\left.r)\binom{n-t-r}{k-t-r+1}+\binom{n-t-r}{k-t-r}\right\}$.

1. INTRODUCTION

A family (or hypergraph) $\mathscr{G} \subset 2^{[n]}$ is called r-wise t-intersecting if $\left|G_{1} \cap \cdots \cap G_{r}\right| \geq t$ holds for all $G_{1}, \ldots, G_{r} \in \mathscr{G}$. The aim of this paper is to find largest r-wise t-intersecting families with some additional conditions, which extends some of Frankl's results and his proof technique developed in [11]. Let us define a typical r-wise t-intersecting family $\mathscr{G}_{i}(n, r, t)$ and its k-uniform subfamily $\mathscr{F}_{i}(n, k, r, t)$ as follows:

$$
\begin{aligned}
\mathscr{G}_{i}(n, r, t) & =\{G \subset[n]:|G \cap[t+r i]| \geq t+(r-1) i\} \\
\mathscr{F}_{i}(n, k, r, t) & =\mathscr{G}_{i}(n, r, t) \cap\binom{n]}{k}
\end{aligned}
$$

An r-wise t-intersecting family \mathscr{G} is called non-trivial if $|\cap \mathscr{G}|<t$, where $\bigcap_{\mathscr{G}}:=\bigcap_{G \in \mathscr{G}} G$. Two families $\mathscr{G}, \mathscr{G}^{\prime} \subset 2^{[n]}$ are said to be isomorphic and denoted by $\mathscr{G} \cong \mathscr{G}^{\prime}$ if there exists a vertex permutation τ on $[n]$ such that $\mathscr{G}^{\prime}=\{\{\tau(g): g \in G\}: G \in \mathscr{G}\}$.

Let $m(n, k, r, t)$ be the maximal size of k-uniform r-wise t-intersecting families on n vertices. To determine $m(n, k, r, t)$ is one of the oldest problems in extremal set theory, which is still widely open. The case $r=2$ was observed by Erdős-Ko-Rado[6], Frank1[9], Wilson[34], and then $m(n, k, 2, t)=\max _{i}\left|\mathscr{F}_{i}(n, k, 2, t)\right|$ was finally proved by Ahlswede and Khachatrian[2]. Frankl[8] showed $m(n, k, r, 1)=\left|\mathscr{F}_{0}(n, k, r, 1)\right|$ if $(r-1) n \geq r k$, see also [20,27]. Partial results for the cases $r \geq 3$ and $t \geq 2$ are found in [12, 14, 29, 30, 31, 32]. All known results suggest

$$
m(n, k, r, t)=\max _{i}\left|\mathscr{F}_{i}(n, k, r, t)\right|
$$

Date: February 22, 2007, 02:10pm.
2000 Mathematics Subject Classification. Primary: 05D05 Secondary: 05C65.
Key words and phrases. Erdős-Ko-Rado Theorem; intersecting family; Sperner family;
The author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027.
in general, and we will consider the case when the maximum is attained by \mathscr{F}_{0} or \mathscr{F}_{1}. To state our result let us define a list A of acceptable parameters as follows.

$$
\begin{align*}
A= & \left\{(r, t): r \geq 5,1 \leq t \leq 2^{r+1}-3 r-1\right\} \\
& -\{(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(7,1)\} . \tag{1}
\end{align*}
$$

Theorem 1. Let $(r, t) \in A$ be fixed. Then there exist positive constants $\boldsymbol{\varepsilon}, n_{0}$ such that

$$
m(n, k, r, t)=\max \left\{\left|\mathscr{F}_{0}(n, k, r, t)\right|,\left|\mathscr{F}_{1}(n, k, r, t)\right|\right\}
$$

holds for all $n>n_{0}$ and k with $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$. Moreover $\mathscr{F}_{0}(n, k, r, t)$ and $\mathscr{F}_{1}(n, k, r, t)$ are the only optimal configurations (up to isomorphism).
We note that $\left|\mathscr{F}_{0}(n, k, r, t)\right|=\binom{n-t}{k-t}$ and $\left|\mathscr{F}_{1}(n, k, r, t)\right|=(t+r)\binom{n-t-r}{k-t-r+1}+\binom{n-t-r}{k-t-r}$. Some computation shows that if $(r, t) \in A$ and $r \ll k$ then $\max \left\{\left|\mathscr{F}_{0}\right|,\left|\mathscr{F}_{1}\right|\right\}$ is attained by

$$
\begin{cases}\mathscr{F}_{0}(n, k, r, t) & \text { if } 1 \leq t \leq 2^{r}-r-2, \text { or } t=2^{r}-r-1 \text { and } n \geq 2 k-2^{r}+\lceil r / 2\rceil+3, \\ \mathscr{F}_{1}(n, k, r, t) & \text { if } t \geq 2^{r}-r, \text { or } t=2^{r}-r-1 \text { and } n \leq 2 k-2^{r}+\lceil r / 2\rceil+2 .\end{cases}
$$

Conjecture 1. Theorem 1 is true for all $r \geq 3$ and $1 \leq t \leq 2^{r+1}-3 r-1$.
Let $m^{*}(n, k, r, t)$ be the maximal size of non-trivial k-uniform r-wise t-intersecting families on n vertices. Ahlswede and Khachatrian[1] determined $m^{*}(n, k, 2, t)$ completely, which included earlier results of Hilton-Milner[21] and Frankl[10]. In [33] a k-uniform version of the Brace-Daykin theorem[4] is considered for $m^{*}(n, k, r \geq 7,2)$ and $k / n \approx 1 / 2$. To state our result let us define some families of k-uniform hypergraphs as follows.

$$
\begin{aligned}
\mathbf{F}(n, k, r, t) & =\left\{\mathscr{F} \subset\binom{n]}{k}: \mathscr{F} \text { is } r \text {-wise } t \text {-intersecting }\right\}, \\
\mathbf{F}_{j}(n, k, r, t) & =\left\{\mathscr{F} \subset\binom{[n]}{k}: \mathscr{F} \subset \mathscr{F}^{\prime} \text { for some } \mathscr{F}^{\prime} \cong \mathscr{F}_{j}(n, k, r, t)\right\}, \\
\mathbf{Y}^{i}(n, k, r, t) & =\mathbf{F}(n, k, r, t)-\bigcup_{0 \leq j \leq i} \mathbf{F}_{j}(n, k, r, t) .
\end{aligned}
$$

For fixed n, k, r, t, we clearly have $\mathbf{F}_{j} \subset \mathbf{F}$. We are interested in $m^{*}=\max \left\{|\mathscr{F}|: \mathscr{F} \in \mathbf{Y}^{0}\right\}$. It seems that hypergraphs in \mathbf{F} with nearly largest size only come from some \mathbf{F}_{j}, moreover they are stable in a sense, namely, $\max \left\{|\mathscr{F}|: \mathscr{F} \in \mathbf{Y}^{1}\right\}<(1-\gamma) m^{*}$ for some fixed constant $\gamma>0$. (See [16, 26] for more about stability type results.) We verify this phenomenon in the case $t \leq 2^{r+1}-3 r-1$ and $k / n \approx 1 / 2$.

Theorem 2. Let $(r, t) \in A$ be fixed, where A is defined by (1). Then there exist positive constants $\gamma, \varepsilon, n_{0}$ such that the following (i) and (ii) are true for all $n>n_{0}$ and k with $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$.
(i) $m^{*}(n, k, r, t)=\left|\mathscr{F}_{1}(n, k, r, t)\right|$.
(ii) If $\mathscr{F} \in \mathbf{Y}^{1}(n, k, r, t)$ then $|\mathscr{F}|<(1-\gamma) m^{*}(n, k, r, t)$.

The above result immediately implies Theorem 1 . We also apply this result to get a Sperner type inequality. A family $\mathscr{G} \subset 2^{[n]}$ is called a Sperner family if $G \not \subset G^{\prime}$ holds for all
distinct $G, G^{\prime} \in \mathscr{G}$. Let $s(n, r, t)$ be the maximal size of r-wise t-intersecting Sperner families on n vertices. Milner[25] proved $s(n, r=2, t)=\binom{n}{[(n+t) / 2\rceil}$. Frankl[8] and Gronau[17, $18,19,20]$ determined $s(n, r=3, t=1)$ for $n \geq 53$. Gronau[18] also proved $s(n, r \geq 4, t=$ $1)=\binom{n-1}{\lceil(n-1) / 2\rceil}$ for all n. For sufficiently large n, it was proved that $s(n, r \geq 4, t=2)=$ $\binom{n-2}{\Gamma(n-2) / 2\rceil}$ in [12], $s(n, r, t)=\binom{n-t}{[(n-t) / 2\rceil}$ for $r \geq 5$ and $1 \leq t \leq 2^{r-2} \log 2-1$ in [29], and $s(n, r=3, t=2)$ was determined in [12, 14]. Using Theorem 2 we prove the following.

Theorem 3. Let $r \geq 7$ and $1 \leq t \leq 2^{r+1}-3 r-1$. Then there exists n_{0} such that

$$
s(n, r, t)= \begin{cases}\left|\mathscr{F}_{0}\left(n, k_{0}, r, t\right)\right| & \text { if } \quad 1 \leq t \leq 2^{r}-r-2 \\ \left|\mathscr{F}_{1}\left(n, k_{1}, r, t\right)\right| & \text { if } 2^{r}-r-1 \leq t \leq 2^{r+1}-3 r-1\end{cases}
$$

for all $n>n_{0}$, where $k_{0} \in\left\{t+\left\lceil\frac{n-t}{2}\right\rceil, t+\left\lfloor\frac{n-t}{2}\right\rfloor\right\}$ and $k_{1}=t+r-1+\left\lceil\frac{n-t-r}{2}\right\rceil$. Moreover $\mathscr{F}_{0}\left(n, k_{0}, r, t\right)$ and $\mathscr{F}_{1}\left(n, k_{1}, r, t\right)$ are the only optimal configurations (up to isomorphism).

Conjecture 2. Theorem 3 is true for $4 \leq r \leq 6$ as well.
Due to the results mentioned above [18, 12], the conjecture is true for $t=1,2$. Our proof of Theorem 3 is valid for all $(r, t) \in A$, and the conjecture is open for $(r, t) \in\{(4, t)$: $3 \leq t \leq 19\} \cup\{(5,3),(5,4),(6,3)\}$. The conjecture fails for $r=3$. In fact it is known from [$8,17,14]$ that $s(n=2 m, 3,1)=\binom{n-1}{m}+1, s(n=2 m+1,3,2)=\binom{n-2}{m}+2$ (for n large enough). The exact value of $s(n, 3,3)$ is not known, while $s(n=2 m, 3,3) \geq\binom{ n-3}{m-1}+3$.

Finally we introduce a weighted version of Frankl's result in [11], which was a starting point of this research. Throughout this paper, p and $q=1-p$ denote positive real numbers. For a family $\mathscr{G} \subset 2^{X}$ we define the p-weight of \mathscr{G}, denoted by $w_{p}(\mathscr{G}: X)$, as follows:

$$
w_{p}(\mathscr{G}: X)=\sum_{G \in \mathscr{G}} p^{|G|} q^{|X|-|G|}=\sum_{i=0}^{|X|}\left|\mathscr{G} \cap\binom{X}{i}\right| p^{i} q^{|X|-i} .
$$

We simply write $w_{p}(\mathscr{G})$ for the case $X=[n]$.
Let $w(n, p, r, t)$ be the maximal p-weight of r-wise t-intersecting families on n vertices, and let $w^{*}(n, p, r, t)$ be the maximal p-weight of non-trivial r-wise t-intersecting families on n vertices. It might be natural to expect

$$
w(n, p, r, t)=\max _{i} w_{p}\left(\mathscr{G}_{i}(n, r, t)\right) .
$$

Ahlswede and Khachatrian proved that this is true for $r=2$ in [3] (cf. [5, 7, 29]). This includes the Katona theorem[22] about $w(n, 1 / 2,2, t)$. It is shown in [13] that

$$
\begin{equation*}
w(n, p, r, 1)=w_{p}\left(\mathscr{G}_{0}(n, r, 1)\right)=p \text { for } p \leq(r-1) / r . \tag{2}
\end{equation*}
$$

Partial results for $w^{*}(n, p, r, 1)$ are found in [15, 33], which extend the result of BraceDaykin[4]: $w^{*}(n, 1 / 2, r, 1)=w_{1 / 2}\left(\mathscr{G}_{1}(n, r, 1)\right)$. Let us define some families of hypergraphs
as follows.

$$
\begin{aligned}
\mathbf{G}(n, r, t) & =\left\{\mathscr{G} \subset 2^{[n]}: \mathscr{G} \text { is } r \text {-wise } t \text {-intersecting }\right\}, \\
\mathbf{G}_{j}(n, r, t) & =\left\{\mathscr{G} \subset 2^{[n]}: \mathscr{G} \subset \mathscr{G}^{\prime} \text { for some } \mathscr{G}^{\prime} \cong \mathscr{G}_{j}(n, r, t)\right\}, \\
\mathbf{X}^{i}(n, r, t) & =\mathbf{G}(n, r, t)-\bigcup_{0 \leq j \leq i} \mathbf{G}_{j}(n, r, t) .
\end{aligned}
$$

Now we state the main result in this paper, which will imply Theorem 2.
Theorem 4. Let $(r, t) \in A$ be fixed, where A is defined by (1). Then there exist positive constants γ, ε such that the following (i) and (ii) are true for all $n \geq r+t$ and p with $\left|p-\frac{1}{2}\right|<\varepsilon$.
(i) $w^{*}(n, p, r, t)=w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)$.
(ii) If $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$ then $w_{p}(\mathscr{G})<(1-\gamma) w^{*}(n, p, r, t)$.

In [15] it is shown by construction that $w^{*}(n, p, 5,1)>w_{p}\left(\mathscr{G}_{1}(n, 5,1)\right)$ for all $1 / 2<$ $p<(1+\sqrt{21}) / 10$. Theorem 4 could be true for all $r \geq 5$ with only exception $r=5$ and $t=1$, and the same extension could be expected for Theorem 2. The upper bound for t set by (1) in Theorem 4 (and also Theorems 2 and 3) is best possible. In fact we have $w_{p}\left(\mathscr{G}_{2}(n, r, t)\right)>w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)$ for $t \geq 2^{r+1}-3 r$, see Lemma 2 in the next section. We emphasize that Frankl has already got a special case of (i) of Theorem 4 in [11] (Theorem 6.4), where he proved

$$
\begin{equation*}
w^{*}(n, 1 / 2, r, t)=w_{1 / 2}\left(\mathscr{G}_{1}(n, r, t)\right) \text { for } r \geq 5 \text { and } 1 \leq t \leq 2^{r}-r-1 . \tag{3}
\end{equation*}
$$

Our proof of (i) is based on his idea, but changing the weight from $1 / 2$ to p is not straightforward. As we mentioned above, (3) is no longer true if we replace $1 / 2$ with $1 / 2+\varepsilon$ for the case $r=5$ and $t=1$. One of the main reasons comes from the fact

$$
w^{*}(n, 1 / 2,3,2)<0.773(1 / 2)^{2},
$$

which Frankl used as a base case for his proof of (3), while in our case we only have

$$
\lim _{n \rightarrow \infty} w^{*}(n, p, 3,2)=p^{2}
$$

for $p=1 / 2+\varepsilon$, see [12]. We will use results from [12, 29, 32] for our base case, which give $w(n, p, r, t)$ for $r=4,5$, see Lemma 5. Theorem 4 implies the following immediately.
Theorem 5. Let $(r, t) \in A$ be fixed. Then there exists positive constant ε such that

$$
w(n, p, r, t)=\max \left\{w_{p}\left(\mathscr{G}_{0}(n, r, t)\right), w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)\right\}
$$

holds for all $n \geq r+t$ and p with $\left|p-\frac{1}{2}\right|<\varepsilon$. Moreover $\mathscr{G}_{0}(n, r, t)$ and $\mathscr{G}_{1}(n, r, t)$ are the only optimal configurations (up to isomorphism).

Comparing $w_{p}\left(\mathscr{G}_{1}\right)$ and $w_{p}\left(\mathscr{G}_{2}\right)$ (see Lemma 1 in the next section), we find that if $(r, t) \in$ A then $\max \left\{w_{p}\left(\mathscr{G}_{1}\right), w_{p}\left(\mathscr{G}_{2}\right)\right\}$ is attained by

$$
\begin{cases}\mathscr{G}_{0}(n, r, t) & \text { if } 1 \leq t \leq 2^{r}-r-2, \text { or } t=2^{r}-r-1 \text { and } p \leq 1 / 2 \\ \mathscr{G}_{1}(n, r, t) & \text { if } t \geq 2^{r}-r, \text { or } t=2^{r}-r-1 \text { and } p>1 / 2\end{cases}
$$

In Theorems 1 and 5, we focused on the case when the range for k / n or p is around $1 / 2$. We can extend this range for the case $t \leq 2^{r}-r-1$ as follows.

Theorem 6. Let $(r, t) \in A$ and $t \leq 2^{r}-r-1$. Then for all $\varepsilon>0$ there exist positive constants γ, n_{0} such that $m^{*}(n, k, r, t)<(1-\gamma)\binom{n-t}{k-t}$ holds for all $n>n_{0}$ and k with $\frac{k}{n}<$ $\frac{1}{2}-\varepsilon$. In particular, we have $m(n, k, r, t)=\binom{n-t}{k-t}$, and $\mathscr{F}_{0}(n, k, r, t)$ is the only optimal family (up to isomorphism).

Theorem 7. Let $(r, t) \in A$ and $t \leq 2^{r}-r-1$. Then for all $\varepsilon>0$ there exists positive constant γ such that $w^{*}(n, p, r, t)<(1-\gamma) p^{t}$ holds for all $n \geq t$ and p with $p<\frac{1}{2}-\varepsilon$. In particular, we have $w(n, p, r, t)=p^{t}$, and $\mathscr{G}_{0}(n, r, t)$ is the only optimal family (up to isomorphism).

As the reader might expect, $m(n, k, r, t) /\binom{n}{k}$ and $w(n, p, r, t)$ are closely related when $p \approx k / n$. This was observed by Dinur and Safra in [7] for the case $r=2$. See also [29] for more general setting. We will fully use this relation to prove our results.

In Section 2, we prepare some tools for the proofs. We prove Theorem 4 in Section 3. In the last section, we prove the other theorems in the following implication.

$$
\text { Theorem } 3 \Leftarrow \text { Theorem } 2 \Leftarrow \text { Theorem } 4 \Rightarrow \text { Theorem } 6 \Rightarrow \text { Theorem } 7
$$

2. Tools

2.1. Some inequalities. To find $w(n, p, r, t)$ we need to know $\max _{i} w_{p}\left(\mathscr{G}_{i}(n, r, t)\right)$. So let us start with comparing $w_{p}\left(\mathscr{G}_{0}(n, r, t)\right)=p^{t}$ and $w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)=(t+r) p^{t+r-1} q+p^{t+r}$. Then we have $w_{p}\left(\mathscr{G}_{0}\right) \geq w_{p}\left(\mathscr{G}_{1}\right)$ iff $t \leq\left(p^{1-r}-p\right) / q-r=: f(p)$. We note that $f(1 / 2)=$ $2^{r}-r-1$, and $f(p)$ is decreasing iff $1-q r-p^{r}<0$ (and this is so for $p=1 / 2$ and $r \geq 2$). Thus we have the following.

Lemma 1. For every $r \geq 2$ there exists $\varepsilon>0$ such that $w_{p}\left(\mathscr{G}_{0}(n, r, t)\right) \geq w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)$ holds for $p \in(1 / 2-\varepsilon, 1 / 2]$ iff $1 \leq t \leq 2^{r}-r-1$, and $w_{p}\left(\mathscr{G}_{0}(n, r, t)\right)>w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)$ holds for $p \in(1 / 2,1 / 2+\varepsilon)$ iff $1 \leq t \leq 2^{r}-r-2$.

Lemma 2. For every $r \geq 3$ there exists $\varepsilon>0$ such that $w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)>w_{p}\left(\mathscr{G}_{2}(n, r, t)\right)$ holds for all p with $|p-1 / 2|<\varepsilon$ iff $1 \leq t \leq 2^{r+1}-3 r-1$.

Proof. Since $w_{p}(\mathscr{G})$ is a continuous function of p (for fixed \mathscr{G}), it is sufficient to show the case $p=1 / 2$. So set $p=1 / 2$ and let $\mathscr{G}_{1}=\mathscr{G}_{1}(n, r, t)$ and $\mathscr{G}_{2}=\mathscr{G}_{2}(n, r, t)$. First we note that $w_{p}\left(\mathscr{G}_{1}\right)>w_{p}\left(\mathscr{G}_{2}\right)$ iff $w_{p}\left(\mathscr{G}_{1} \backslash \mathscr{G}_{2}\right)>w_{p}\left(\mathscr{G}_{2} \backslash \mathscr{G}_{1}\right)$, and

$$
\begin{aligned}
\mathscr{G}_{1} \backslash \mathscr{G}_{2}= & \{G \subset[n]:[t+r] \subset G,|G \cap[t+r+1, t+2 r]|<r-2\} \\
& \cup\{G \subset[n]:|G \cap[t+r]|=t+r-1,|G \cap[t+r+1, t+2 r]|<r-1\}, \\
\mathscr{G}_{2} \backslash \mathscr{G}_{1}= & \{G \subset[n]:|G \cap[t+r]|=t+r-2,[t+r+1, t+2 r] \subset G\} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
w_{p}\left(\mathscr{G}_{1} \backslash \mathscr{G}_{2}\right) & =p^{t+2 r}\left(\sum_{j=0}^{r-3}\binom{r}{j}+(t+r) \sum_{j=0}^{r-2}\binom{r}{j}\right) \\
& =p^{t+2 r}\left((t+r+1)\left(2^{r}-1-r\right)-\binom{r}{2}\right), \\
w_{p}\left(\mathscr{G}_{2} \backslash \mathscr{G}_{1}\right) & =p^{t+2 r}\binom{t+r}{2} .
\end{aligned}
$$

Thus we have $w_{p}\left(\mathscr{G}_{1}\right)=w_{p}\left(\mathscr{G}_{2}\right)$ iff $f(t):=(t+r+1)\left(2^{r}-1-r\right)-\binom{r}{2}-\binom{t+r}{2}=0$, and this quadratic equation of t has only one positive root. We have $f\left(2^{r+1}-3 r-1\right)=2^{r}-r^{2} / 2-$ $r / 2-1>0$ and $f\left(2^{r+1}-3 r\right)=-\left(r^{2}-r+2\right) / 2<0$, which completes the proof.

Similarly one can prove the following.
Lemma 3. Let $j=3$, 4. For every $r \geq j+2$ there exists $\varepsilon>0$ such that $w_{p}\left(\mathscr{G}_{j-1}(n, r, t)\right)>$ $w_{p}\left(\mathscr{G}_{j}(n, r, t)\right)$ holds for all p with $|p-1 / 2|<\varepsilon$ iff $1 \leq t \leq j\left(2^{r}-2 r+1\right)+r-3$.

Throughout this paper, let $\alpha_{r, p} \in(p, 1)$ be the root of the equation $X=p+q X^{r}$. We write α_{r} omitting p for the case $p=1 / 2$. For later use, we record the numerical data: $\alpha_{3}=$ $(\sqrt{5}-1) / 2 \approx 0.618, \alpha_{4} \approx 0.543689, \alpha_{5} \approx 0.51879, \alpha_{6} \approx 0.50866, \alpha_{7} \approx 0.504138$. We list inequalities about $w(n, p, r, t)$ below, which will be used to prove Theorem 4. Lemma 6 follows from Lemma 4 and Lemma 5.

Lemma 4 ([33]). Let p, r, t_{0}, c be fixed constants. Suppose that $w\left(n, p, r, t_{0}\right)=c$ holds for all $n \geq t_{0}$. Then we have $w(n, p, r, t) \leq c \alpha_{r, p}^{t-t_{0}}$ for all $t \geq t_{0}$ and $n \geq t$.

Lemma 5 ([12, 29, 32]). Let $r=3$ and $1 \leq t \leq 2$, or $r=4$ and $1 \leq t \leq 7$, or $r=5$ and $1 \leq t \leq 18$. Then there exists $\varepsilon>0$ such that $w(n, p, r, t)=p^{t}$ holds for all $n \geq t$ and p with $\left|p-\frac{1}{2}\right|<\varepsilon$.
Lemma 6. Let $s \geq 2$ and $t \geq 7$. Then there exists $\varepsilon>0$ such that

$$
w(n, p, 3, s) \leq p^{2} \alpha_{3, p}^{s-2} \text { and } w(n, p, 4, t) \leq p^{7} \alpha_{4, p}^{t-7}
$$

hold for all $n \geq s$ (resp. $n \geq t$) and p with $\left|p-\frac{1}{2}\right|<\varepsilon$.
We will use Lemma 8 in our main reduction step to prove Theorem 4, see Claim 9. To prove Lemma 8 we need the following lemma, which is essentially proved in [11], cf. Proposition 2.8 and 7.7 of [11].
Lemma 7. We have (i) $\left(2 \alpha_{r}\right)^{2^{r+1}}<8$ for $r \geq 8$, and (ii) $1 /\left(2 \alpha_{r}\right)<1-(1 / 2)^{r}$.
Proof. Recall that α_{r} is the unique root of $f(x)=0$ in $(1 / 2,1)$, where $f(x)=x^{r}-2 x+1$. We note that $f(1 / 2)>0$ and $f(1)=0$.
(i) is equivalent to $2 \alpha_{r}<8^{b}$, where $b=1 / 2^{r+1}$. It is sufficient to show $f\left(8^{b} / 2\right)<0$. We use $b r=r / 2^{r+1} \leq 8 / 2^{9}=1 / 64,2 \times 8^{1 / 64}<2.07<\log 8$, and $8^{b}=e^{b \log 8}>1+b \log 8$. Then we have $\left(8^{b} / 2\right)^{r}=8^{b r} / 2^{r} \leq 8^{1 / 64} / 2^{r}<(\log 8) / 2^{r+1}=b \log 8<8^{b}-1$, as desired.
(ii) is equivalent to $\alpha_{r}>\beta:=2^{r-1} /\left(2^{r}-1\right)$. It is sufficient to show $f(\beta)>0$, and this follows from $\beta^{r}=\left(\frac{1}{2}\left(\frac{2^{r}}{2^{r}-1}\right)\right)^{r}=\frac{1}{2^{r}}\left(\frac{2^{r}}{2^{r}-1}\right)^{r}>\frac{1}{2^{r}}\left(\frac{2^{r}}{2^{r}-1}\right)=\frac{1}{2^{r}-1}=2 \beta-1$.

Lemma 8. Let $r \geq 9, t_{r}=2^{r+1}-3 r-1$ and $p=1 / 2$. Then we have

$$
\begin{equation*}
w_{p}\left(\mathscr{G}_{1}\left(n, r-1, t_{r-1}\right)\right) \alpha_{r-1}^{(t+3)-t_{r-1}}<w_{p}\left(\mathscr{G}_{1}(n, r, t)\right) \tag{4}
\end{equation*}
$$

for $t_{r-1} \leq t \leq t_{r}$, where $w_{p}\left(\mathscr{G}_{1}(n, a, b)\right)=(a+b+1) p^{a+b}$.
Proof. Set $\alpha=\alpha_{r-1}, t=t_{r}-i$ and we prove (4) by induction on $i, 0 \leq i \leq t_{r}-t_{r-1}=2^{r}-3$. First we show the case $i=0$, i.e., $t=t_{r}$. In this case (4) is

$$
\left(2^{r}-2 r+2\right) p^{2^{r}-2 r+1} \alpha^{2^{r}}<\left(2^{r+1}-2 r\right) p^{2^{r+1}-2 r-1}
$$

or equivalently,

$$
\alpha^{2^{r}}<\frac{2^{r+1}-2 r}{2^{r}-2 r+2} p^{2^{r}-2}
$$

The RHS is more than $2 p^{2^{r}-2}=82^{2^{r}}$, and so it is sufficient to show $\alpha^{2^{r}}<8 p^{2^{r}}$, i.e., $\left(2 \alpha_{r-1}\right)^{2^{r}}<8$, which is true for $r \geq 9$ by Lemma 7 (i).

To show the induction step, we assume that (4) is true for i, that is,

$$
R(2 \alpha)^{2^{r}-i}<2^{r+1}-2 r-i,
$$

where $R=\left(2^{r}-2 r+2\right) / 4$. Then, for the case $i+1$, we have

$$
R(2 \alpha)^{2^{r}-(i+1)}=R(2 \alpha)^{2^{r}-i} /(2 \alpha)<\left(2^{r+1}-2 r-i\right) /(2 \alpha)
$$

We have to show that the RHS is less than $2^{r+1}-2 r-(i+1)$, that is,

$$
\frac{1}{2 \alpha}<1-\frac{1}{2^{r+1}-2 r-i}
$$

By Lemma 7 (ii) and $i \leq 2^{r}-3$ we have

$$
\frac{1}{2 \alpha_{r-1}}<1-\frac{1}{2^{r-1}}<1-\frac{1}{2^{r+1}-2 r-\left(2^{r}-3\right)} \leq 1-\frac{1}{2^{r+1}-2 r-i}
$$

as desired.
We use Lemmas 9 and 10 to prove Theorems 4 and 7 respectively.
Lemma 9. $w^{*}(n, p, r, t) \leq w^{*}(n, p, r-1, t+1)$.
Proof. If $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ then $\mathscr{G} \in \mathbf{X}^{0}(n, r-1, t+1)$. In fact, if \mathscr{G} is not $(r-1)$-wise $(t+1)$ intersecting, then we can find $G_{1}, \ldots, G_{r-1} \in \mathscr{G}$ such that $\left|G_{1} \cap \cdots \cap G_{r-1}\right|=t$. But \mathscr{G} is r-wise t-intersecting and so every $G \in \mathscr{G}$ must contain $G_{1} \cap \cdots \cap G_{r-1}$, which contradicts the fact that \mathscr{G} is non-trivial.

Lemma 10. $w^{*}(n+1, p, r, t) \geq w^{*}(n, p, r, t)$.
Proof. Choose $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ with $w_{p}(\mathscr{G})=w^{*}(n, p, r, t)$. Then we have $\mathscr{G}^{\prime}:=\mathscr{G} \cup\{G \cup$ $\{n+1\}: G \in \mathscr{G}\} \in \mathbf{X}^{0}(n+1, r, t)$ and $w_{p}\left(\mathscr{G}^{\prime}:[n+1]\right)=w_{p}(\mathscr{G}:[n])(q+p)=w^{*}(n, p, r, t)$, which means $w^{*}(n+1, p, r, t) \geq w^{*}(n, p, r, t)$.
2.2. Shifting and shadow. For integers $1 \leq i<j \leq n$ and a family $\mathscr{G} \subset 2^{[n]}$, we define the (i, j)-shift $\sigma_{i j}$ as follows:

$$
\sigma_{i j}(\mathscr{G})=\left\{\sigma_{i j}(G): G \in \mathscr{G}\right\},
$$

where

$$
\sigma_{i j}(G)= \begin{cases}(G-\{j\}) \cup\{i\} & \text { if } i \notin G, j \in G,(G-\{j\}) \cup\{i\} \notin \mathscr{G}, \\ G & \text { otherwise }\end{cases}
$$

A family $\mathscr{G} \subset 2^{[n]}$ is called shifted if $\sigma_{i j}(\mathscr{G})=\mathscr{G}$ for all $1 \leq i<j \leq n$, and \mathscr{G} is called tame if it is shifted and $\bigcap \mathscr{G}=\emptyset$. If \mathscr{G} is r-wise t-intersecting, then so is $\sigma_{i j}(\mathscr{G})$. Note also that $w_{p}(\mathscr{G})=w_{p}\left(\sigma_{i j}(\mathscr{G})\right)$, namely, shifting operations keep the p-weight.

Lemma 11. Let $\mathscr{G} \subset 2^{[n]}$ be a non-trivial r-wise t-intersecting family with maximal p weight. Then we can find a tame r-wise t-intersecting family $\mathscr{G}^{\prime} \subset 2^{[n]}$ with $w_{p}\left(\mathscr{G}^{\prime}\right)=$ $w_{p}(\mathscr{G})$.
Proof. If $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ then $\mathscr{G} \in \mathbf{X}^{0}(n, r-1, t+1)$ (see Lemma 9). We apply all possible shifting operations to \mathscr{G} to get a shifted family $\mathscr{G}^{\prime} \in \mathbf{X}^{0}(n, r-1, t+1)$ with the same p weight.

We have to show that $\cap \mathscr{G}^{\prime}=\emptyset$. Otherwise we may assume that $1 \in \bigcap^{G^{\prime}}$ and $H=$ $[2, n] \notin \mathscr{G}^{\prime}$. Since \mathscr{G}^{\prime} is p-weight maximal we can find $G_{1}, \ldots, G_{r-1} \in \mathscr{G}^{\prime}$ such that $\mid G_{1} \cap$ $\cdots \cap G_{r-1} \cap H \mid<t$. Then we have $\left|G_{1} \cap \cdots \cap G_{r-1}\right|<t+1$, which is a contradiction.

To prove Theorems 2, 3 and 6 , we will use some basic facts about shadow. For a family $\mathscr{G} \subset 2^{[n]}$ and a positive integer $\ell<n$, let us define the ℓ-th lower shadow of \mathscr{G}, denoted by $\Delta_{\ell}(\mathscr{G})$, as follows:

$$
\Delta_{\ell}(\mathscr{G})=\left\{F \in\binom{[n]}{\ell}: F \subset \exists G \in \mathscr{G}\right\} .
$$

Similarly, the ℓ-th upper shadow of \mathscr{G} is defined by $\nabla_{\ell}(\mathscr{G})=\left\{H \in\binom{[n]}{\ell}: H \supset \exists G \in \mathscr{G}\right\}$. We define the complement family of $\mathscr{G} \subset 2^{[n]}$ by $\mathscr{G}^{c}:=\{[n]-G: G \in \mathscr{G}\}$. We note that $\nabla_{\ell}(\mathscr{G})=\left(\Delta_{n-\ell}\left(\mathscr{G}^{c}\right)\right)^{c}$ and so $\left|\nabla_{\ell}\left(\mathscr{G}^{\prime}\right)\right|=\left|\Delta_{n-\ell}\left(\mathscr{G}^{c}\right)\right|$.
Lemma 12. Let $0<a<b$ and $\emptyset \neq \mathscr{G}_{a} \subset\binom{[n]}{a}$. Then we have

$$
\frac{\left|\nabla_{b}\left(\mathscr{G}_{a}\right)\right|}{\left|\mathscr{G}_{a}\right|} \geq \frac{\binom{n}{b}}{\binom{n}{a}}
$$

Moreover if $a+b<n$ then we have $\left|\nabla_{b}\left(\mathscr{G}_{a}\right)\right|>\left|\mathscr{G}_{a}\right|$.
Proof. Choose a real $x \leq n$ so that $\left|\mathscr{G}_{a}\right|=\binom{x}{n-a}$. By the Kruskal-Katona Theorem[24, 23], we have $\left|\nabla_{b}\left(\mathscr{G}_{a}\right)\right|=\left|\Delta_{n-b}\left(\mathscr{G}_{a}^{c}\right)\right| \geq\binom{ x}{n-b}$, and $\left|\nabla_{b}\left(\mathscr{G}_{a}\right)\right| /\left|\mathscr{G}_{a}\right| \geq\binom{ x}{n-b} /\binom{x}{n-a} \geq\binom{ n}{b} /\binom{n}{a}$, where we used $x \leq n$ in the last inequality. If $a+b<n$ then $\binom{n}{b} /\binom{n}{a}>1$ and the result follows.

Lemma 13. Let $\mathscr{A}, \mathscr{B} \subset 2^{[n]}$ be Sperner families, and let $c>1$ be a real. Suppose that

$$
\begin{equation*}
\mathscr{A} \cap \Delta(\mathscr{B})=\emptyset, \tag{5}
\end{equation*}
$$

where $\Delta(\mathscr{B})=\{C: C \subset \exists B \in \mathscr{B}\}$. Then we have

$$
c|\mathscr{A}|+|\mathscr{B}| \leq c\binom{n}{\lceil n / 2\rceil}+\binom{n}{\lceil n / 2\rceil-1},
$$

with equality holding iff $\mathscr{A}=\binom{[n]}{[n / 2\rceil}$ and $\mathscr{B}=\binom{[n]}{[n / 2\rceil-1}$.
Proof. First suppose that n is odd and let $n=2 m+1$. Then by the Sperner theorem[28], \mathscr{A} and \mathscr{B} have size at most $\binom{n}{m+1}=\binom{n}{m}$, which gives the desired upper bound. Possible optimal configurations for \mathscr{A}, \mathscr{B} are $\binom{[n]}{m+1}$ and $\binom{[n]}{m}$. Only the case $\mathscr{A}=\binom{[n]}{m+1}$ and $\mathscr{B}=$ $\binom{[n]}{m}$ satisfies (5).

Next suppose that n is even and let $n=2 m$. Set $a_{i}=\left|\mathscr{A} \cap\binom{[n]}{i}\right|, b_{i}=\left|\mathscr{B} \cap\binom{[n]}{i}\right|$ and $x_{i}=c a_{i}+b_{i}$. Using the Yamamoto[35] (or LYM) inequality, we have

$$
\sum_{i} \frac{x_{i}}{\binom{n}{i}}=c \sum_{i} \frac{a_{i}}{\binom{n}{i}}+\sum_{i} \frac{b_{i}}{\binom{n}{i}} \leq c+1,
$$

and

$$
\begin{equation*}
\sum_{i \neq m} \frac{x_{i}}{\binom{n}{i}} \leq c+1-\frac{x_{m}}{\binom{n}{m}} . \tag{6}
\end{equation*}
$$

By (5) we have $a_{m}+b_{m} \leq\binom{ n}{m}$, and

$$
\begin{equation*}
x_{m}=c a_{m}+b_{m} \leq c\left(a_{m}+b_{m}\right) \leq c\binom{n}{m} . \tag{7}
\end{equation*}
$$

Consequently we have

$$
\begin{aligned}
\sum_{i} x_{i} & =x_{m}+\sum_{i \neq m} x_{i} \leq x_{m}+\binom{n}{m-1} \sum_{i \neq m} \frac{x_{i}}{\binom{n}{i}} \\
& \leq x_{m}+\binom{n}{m-1}\left(c+1-\frac{x_{m}}{\binom{n}{m}}\right)=(c+1)\binom{n}{m-1}+\frac{x_{m}}{m+1} \\
& \leq(c+1)\binom{n}{m-1}+\frac{c}{m+1}\binom{n}{m}=c\binom{n}{m}+\binom{n}{m-1},
\end{aligned}
$$

which is the desired inequality. For the equality, we need $c a_{m}+b_{m}=c\left(a_{m}+b_{m}\right)=c\binom{n}{m}$ in (7), which implies $b_{m}=0$ and $a_{m}=\binom{n}{m}$. Since $\sum_{i} a_{i} /\binom{n}{i} \leq 1$, we have $a_{i}=0$ if $i \neq m$, i.e., $\mathscr{A}=\binom{[n]}{m}$. By (5) we have $b_{i}=0$ if $i>m$, and $c|\mathscr{A}|+|\mathscr{B}|=c\binom{n}{m}+\binom{n}{m-1}$ implies $|\mathscr{B}|=$ $\sum_{i<m} b_{i}=\binom{n}{m-1}$. We also need equality in (6), which gives $\sum_{i<m} b_{i} /\binom{n}{i}=1$. Consequently we have $\binom{n}{m-1}=\sum_{i<m} b_{i} \leq\binom{ n}{m-1} \sum_{i<m} b_{i} /\binom{n}{i}=\binom{n}{m-1}$, and so $b_{m-1}=\binom{n}{m-1}$, namely $\mathscr{B}=\binom{[n]}{m-1}$.

3. Proof of Theorem 4

First we show (i). Let $(r, t) \in A$ and let $\mathscr{G} \subset 2^{[n]}$ be a non-trivial r-wise t-intersecting family with maximal p-weight. By Lemma 11 we may assume that \mathscr{G} is tame, namely, it
is shifted and $\bigcap \mathscr{G}=\emptyset$. If $\mathscr{G} \in \mathbf{G}_{1}(n, r, t)$ then there is nothing to prove. Thus we assume that $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$ and we will show that there exist $\gamma, \varepsilon>0$ such that

$$
\begin{equation*}
w_{p}(\mathscr{G})<(1-\gamma) w_{p}\left(\mathscr{G}_{1}(n, r, t)\right) \tag{8}
\end{equation*}
$$

holds for all $n \geq r+t$ and p with $|p-1 / 2|<\varepsilon$. If $\mathscr{G} \in \mathbf{X}^{1}-\mathbf{X}^{4}=\mathbf{G}_{2} \cup \mathbf{G}_{3} \cup \mathbf{G}_{4}$ then (8) follows from Lemmas 2 and 3. Thus we may assume that $\mathscr{G} \in \mathbf{X}^{4}(n, r, t)$. Let $\tilde{w}^{*}(n, p, r, t)$ be the maximal p-weight of tame families in $\mathbf{X}^{4}(n, r, t)$. Then it suffices to show

$$
\begin{equation*}
w_{p}(\mathscr{G})=\tilde{w}^{*}(n, p, r, t)<(1-\gamma) w_{p}\left(\mathscr{G}_{1}(n, r, t)\right) \tag{9}
\end{equation*}
$$

Recall that $w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)=(t+r) p^{t+r-1} q+p^{t+r}$ and let $\omega:=w_{1 / 2}\left(\mathscr{G}_{1}(n, r, t)\right)=(t+$ $r+1)(1 / 2)^{t+r}$. The following simple observation is useful.

Claim 1. Suppose that $w_{p}(\mathscr{G}) \leq f(p)$ holds for some continuous function $f(p)$, and suppose that $f(1 / 2)<\omega$. Then there exist $\gamma, \varepsilon>0$ such that $w_{p}(\mathscr{G})<(1-\gamma) w_{p}\left(\mathscr{G}_{1}(n, r, t)\right)$ for all $|p-1 / 2|<\varepsilon$.

Let $t^{(i)}=\max \{j: \mathscr{G}$ is i-wise j-intersecting $\}$, and let $s=t^{(r-1)}$. Since \mathscr{G} is p-weight maximal we have $t^{(r)}=t$. Due to $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ we have $t<s$ and

$$
\begin{equation*}
w_{p}(\mathscr{G}) \leq w^{*}(n, p, r-1, s) \leq w(n, p, r-1, s) \tag{10}
\end{equation*}
$$

After [11] let $h:=\min \{i:|G \cap[t+i]| \geq t$ for all $G \in \mathscr{G}\}$. This is the maximum size of "holes" in $[t+h]$.
Claim 2. $1 \leq h \leq s-t$.
Proof. Since \mathscr{G} is non-trivial, we have $h \geq 1$. By the definition of s and the shiftedness of \mathscr{G}, we have $G_{1}, \ldots, G_{r-1} \in \mathscr{G}$ such that $G_{1} \cap \cdots \cap G_{r-1}=[s]$. Then it follows from $t^{(r)}=t$ that $|[s] \cap G| \geq t$ for all $G \in \mathscr{G}$, namely, $t+h \leq s$.

Let $b=t+h-1$ and let $T_{i}=[b+1-i, b]$ be the right-most i-set in $[b]$. For $A \subset[b]$ let

$$
\mathscr{G}(A)=\{G \cap[b+1, n]: G \in \mathscr{G},[b] \backslash G=A\} .
$$

Since \mathscr{G} is shifted, we have $\mathscr{G}(A) \subset \mathscr{G}\left(T_{i}\right)$ for all $A \in\binom{[b]}{i}$, and thus we have

$$
\begin{equation*}
w_{p}(\mathscr{G}) \leq \sum_{i=0}^{h}\binom{b}{i} p^{b-i} q^{i} w_{p}\left(\mathscr{G}\left(T_{i}\right):[b+1, n]\right) . \tag{11}
\end{equation*}
$$

Claim 3. For $0 \leq i<h$ and $2 \leq j<r, \mathscr{G}\left(T_{i}\right)$ is j-wise $(i j+(r-1-j) h+1)$-intersecting. Proof. Suppose that $\mathscr{G}\left(T_{i}\right)$ is not j-wise v-intersecting, where $v=i j+(r-1-j) h+1$. Then we can find $G_{1}, \ldots, G_{j} \in \mathscr{G}\left(T_{i}\right)$ such that $\left|G_{1} \cap \cdots \cap G_{j}\right|<v$. Since \mathscr{G} is shifted, we may assume that $G_{1} \cap \cdots \cap G_{j} \subset[b+1, b+v-1]$. By shifting $\left(G_{\ell} \cup[b]\right)-T_{i} \in \mathscr{G}$, we get $G_{\ell}^{\prime}:=\left(G_{\ell} \cup[b]\right)-[b+1+(\ell-1) i, b+\ell i] \in \mathscr{G}$ for $1 \leq \ell \leq j$.

By the definition of h we have some $H \in \mathscr{G}$ such that $|H \cap[b]|<t$ and due to the shiftedness of \mathscr{G} we may assume that $H=[n]-[t, b]$. By shifting H, we get $G_{\ell}^{\prime}:=[n]-$ $[b+i j+1+(\ell-1-j) h, b+i j+(\ell-j) h] \in \mathscr{G}$ for $j<\ell<r$. Then we have $G_{1}^{\prime} \cap \cdots \cap$ $G_{r-1}^{\prime} \cap H=[t-1]$, which contradicts the r-wise t-intersecting property of \mathscr{G}.

Claim 4. $\mathscr{G}\left(T_{h}\right)$ is r-wise $((r-1) h+1)$-intersecting, and if $\mathscr{G} \not \subset \mathscr{G}_{h}(n, r, t)$ then $\mathscr{G}\left(T_{h}\right)$ is $(r-1)$-wise $((r-1) h+2)$-intersecting.

Proof. First suppose that $\mathscr{G}\left(T_{h}\right)$ is not r-wise v-intersecting, where $v=(r-1) h+1$. Then we can find $G_{1}, \ldots, G_{r} \in \mathscr{G}\left(T_{h}\right)$ such that $G_{1} \cap \cdots \cap G_{r} \subset[b+1, b+v-1]$. By shifting $\left(G_{\ell} \cup[b]\right)-T_{h} \in \mathscr{G}$ we get $G_{\ell}^{\prime}:=\left(G_{\ell} \cup[b]\right)-[t+(\ell-1) h, t+\ell h-1] \in \mathscr{G}$ for $1 \leq \ell \leq r$. Then we have $\left|G_{1}^{\prime} \cap \cdots \cap G_{r}^{\prime}\right|<t$, a contradiction.

Next suppose that $\mathscr{G}\left(T_{h}\right)$ is not $(r-1)$-wise w-intersecting, where $w=(r-1) h+2$. Then we can find $G_{1}, \ldots, G_{r-1} \in \mathscr{G}\left(T_{h}\right)$ such that $G_{1} \cap \cdots \cap G_{r-1} \subset[b+1, b+w-1]$. By shifting $\left(G_{\ell} \cup[b]\right)-T_{h} \in \mathscr{G}$ we get $G_{\ell}^{\prime}:=\left(G_{\ell} \cup[b]\right)-[t+(\ell-1) h, t+\ell h-1] \in \mathscr{G}$ for $1 \leq \ell<r$. Since $\mathscr{G} \not \subset \mathscr{G}_{h}(n, r, t)$ we have $G_{r}^{\prime}:=[n]-[t+(r-1) h, t+r h] \in \mathscr{G}$. Then we have $\left|G_{1}^{\prime} \cap \cdots \cap G_{r}^{\prime}\right|<t$.

Now we explain the outline of our proof for (9) (cf. Claims 5-9). If s is large then (9) follows from (10). Thus we may assume s is small, actually we will find that we may assume $s \leq t+4$. Then we have $1 \leq h \leq 4$ by Claim 2 and we can apply Claim 4 since $\mathscr{G} \in \mathbf{X}^{4}(n, r, t)$. Using Claims 3 and 4 we define an upper bound function $g^{(i)}(p)$ for $w_{p}\left(\mathscr{G}\left(T_{i}\right):[b+1, n]\right)$ by

$$
g^{(i)}(p)= \begin{cases}\min \left\{w\left(n^{\prime}, p, r-1, t^{\prime}\right), w\left(n^{\prime}, p, r-2, t^{\prime \prime}\right)\right\} & \text { if } 0 \leq i<h \\ \min \left\{w\left(n^{\prime}, p, r,(r-1) h+1\right), w\left(n^{\prime}, p, r-1,(r-1) h+2\right)\right\} & \text { if } i=h,\end{cases}
$$

where $n^{\prime}=n-b, t^{\prime}=(r-1) i+1$ and $t^{\prime \prime}=(r-2) i+h+1$. We will find continuous functions $f^{(i)}$ such that $g^{(i)}(p) \leq f^{(i)}(p)$ and $\sum_{i=0}^{h}\binom{b}{i} p^{b-i} q^{i} f^{(i)}(1 / 2)<\omega$. Then this together with (11) and Claim 1 will give (9). We will apply Claim 1 several times with different $f^{(i)}$, and our $\varepsilon>0$ will be chosen sufficiently small to get through all the cases.

Let $t_{r}:=2^{r+1}-3 r-1$.
Claim 5. Let $r=5$ and $5 \leq t \leq t_{5}=48$. Then we have (9).
Proof. We show that (9) holds if $s \geq t+5$, and then we proceed the casewise analysis for the cases $s \leq t+4$, i.e., $1 \leq h \leq 4$.

First suppose that $s=t^{(4)} \leq 7$. Since $s>t$ we have $t \leq 6$. By (10) and Lemma 5 it follows $w_{p}(\mathscr{G}) \leq w(n, p, 4, s)=p^{s}$. To apply Claim 1 as $f(p)=p^{s}$, we note that $(1 / 2)^{s}<$ ω holds iff $2^{t-s+5}<t+6$. This is true if $t \leq 6$ and $s \geq t+3$, and we are done in this case. Thus for the case $t \leq 6$ we may assume that $s \leq t+2$, i.e., $1 \leq h \leq 2$ by Claim 2.

Next suppose that $s \geq 8$. By (10) and Lemma 6 we have $w_{p}(\mathscr{G}) \leq w(n, p, 4, s) \leq p^{7} \alpha_{4, p}^{s-7}$. If $s \geq t+5$ then the RHS is less than ω at $p=1 / 2$ for $1 \leq t \leq 50$. Thus we may assume that $s \leq t+4$ and so $1 \leq h \leq 4$ by Claim 2 .

Case 5-1. $h=1$. We find that $\mathscr{G}\left(T_{0}\right)$ is $(r-2)$-wise 2-intersecting by Claim 3, and $\mathscr{G}\left(T_{1}\right)$ is $(r-1)$-wise $(r+1)$-intersecting by Claim 4. Then $w_{p}\left(\mathscr{G}\left(T_{0}\right):[b+1, n]\right) \leq p^{2}$ and $w_{p}\left(\mathscr{G}\left(T_{1}\right):[b+1, n]\right) \leq p^{r+1}$ follow from Lemma 5. Thus using (11) we have

$$
\begin{equation*}
w_{p}(\mathscr{G}) \leq p^{t} \cdot p^{2}+t p^{t-1} q \cdot p^{r+1} \tag{12}
\end{equation*}
$$

and the RHS is less than ω at $p=1 / 2$ for $t>2^{r-1}-2 r-2$. Then Claim 1 gives (9).

Case 5-2. $h=2$. Since $\mathscr{G}\left(T_{0}\right)$ is 3-wise 3-intersecting, $\mathscr{G}\left(T_{1}\right)$ is 4-wise 5-intersecting, and $\mathscr{G}\left(T_{2}\right)$ is 4 -wise 10 -intersecting, we have

$$
w_{p}(\mathscr{G}) \leq p^{t+1} \cdot p^{2} \alpha_{3, p}+(t+1) p^{t} q \cdot p^{5}+\binom{t+1}{2} p^{t-1} q^{2} \cdot p^{7} \alpha_{4, p}^{3}
$$

and the RHS is less than ω at $p=1 / 2$ for $1 \leq t \leq 54$.
Case 5-3. $h=3$. Since $\mathscr{G}\left(T_{0}\right)$ is 3-wise 4-intersecting, $\mathscr{G}\left(T_{1}\right)$ is 3-wise 7-intersecting, $\mathscr{G}\left(T_{2}\right)$ is 4 -wise 9 -intersecting, and $\mathscr{G}\left(T_{3}\right)$ is 5 -wise 13-intersecting, we have

$$
w_{p}(\mathscr{G}) \leq p^{t+2} \cdot p^{2} \alpha_{3, p}^{2}+(t+2) p^{t+1} q \cdot p^{2} \alpha_{3, p}^{5}+\binom{t+2}{2} p^{t} q^{2} \cdot p^{7} \alpha_{4, p}^{2}+\binom{t+2}{3} p^{t-1} q^{3} \cdot p^{13},
$$

and the RHS is less than ω at $p=1 / 2$ for $1 \leq t \leq 49$.
Case 5-4. $h=4$. Since $\mathscr{G}\left(T_{0}\right)$ is 3-wise 5 -intersecting, $\mathscr{G}\left(T_{1}\right)$ is 3-wise 8-intersecting, $\mathscr{G}\left(T_{2}\right)$ is 4 -wise 9 -intersecting, $\mathscr{G}\left(T_{3}\right)$ is 4 -wise 13 -intersecting, and $\mathscr{G}\left(T_{4}\right)$ is 5 -wise 17 intersecting, we have

$$
\begin{aligned}
w_{p}(\mathscr{G}) \leq & p^{t+3} \cdot p^{2} \alpha_{3, p}^{3}+(t+3) p^{t+2} q \cdot p^{2} \alpha_{3, p}^{6}+\binom{t+3}{2} p^{t+1} q^{2} \cdot p^{7} \alpha_{4, p}^{2} \\
& +\binom{t+3}{3} p^{t} q^{3} \cdot p^{7} \alpha_{4, p}^{6}+\binom{t+3}{4} p^{t-1} q^{4} \cdot p^{17}
\end{aligned}
$$

and the RHS is less than ω at $p=1 / 2$ for $1 \leq t \leq 57$.
We note that similarly to Lemma 9 we have

$$
\begin{equation*}
\tilde{w}^{*}(n, p, r, t) \leq \tilde{w}^{*}(n, p, r-1, t+1) \tag{13}
\end{equation*}
$$

Claim 6. Let $r=6$ and $4 \leq t \leq t_{6}=109$. Then we have (9).
Proof. If $5 \leq t+1 \leq t_{5}=48$ then using (13) with Claim 5 we have

$$
\tilde{w}^{*}(n, p, 6, t) \leq \tilde{w}^{*}(n, p, 5, t+1)<(1-\gamma) w_{p}\left(\mathscr{G}_{1}(n, 5, t+1)\right)=(1-\gamma) w_{p}\left(\mathscr{G}_{1}(n, 6, t)\right) .
$$

Thus we may assume that $s \geq t+1 \geq 49$. By (10) and Lemma 4 with Claim 5 we have

$$
w_{p}(\mathscr{G}) \leq w(n, p, 5, s) \leq w_{p}\left(\mathscr{G}_{1}(n, 5,48)\right) \alpha_{5, p}^{s-48} .
$$

If $s \geq t+4$ then the RHS is less than ω at $p=1 / 2$ for $t \leq 124$. Thus we may assume that $s \leq t+3$ and $1 \leq h \leq 3$.

Case 6-1. $h=1$. Same as Case 5-1. (We need (12) for $t \geq t_{5}$. This is true in general for $r \geq 6$. In fact we have (12) for $t>2^{r-1}-2 r-2$ and $t_{r-1}>2^{r-1}-2 r-2$.)

Case 6-2. $h=2$. Since $\mathscr{G}\left(T_{0}\right)$ is $(r-2)$-wise 3-intersecting, $\mathscr{G}\left(T_{1}\right)$ is $(r-2)$-wise $(r+1)$-intersecting, and $\mathscr{G}\left(T_{2}\right)$ is $(r-1)$-wise $(2 r)$-intersecting, we have

$$
\begin{equation*}
w_{p}(\mathscr{G}) \leq p^{t+1} \cdot p^{3}+(t+1) p^{t} q \cdot p^{r+1}+\binom{t+1}{2} p^{t-1} q^{2} \cdot p^{2 r} \tag{14}
\end{equation*}
$$

and the RHS is less than ω at $p=1 / 2$ for $t_{r-1} \leq t \leq 2^{r+1}$.
Case 6-3. $h=3$. Since $\mathscr{G}\left(T_{0}\right)$ is $(r-2)$-wise 4-intersecting, $\mathscr{G}\left(T_{1}\right)$ is $(r-2)$-wise $(r+2)$-intersecting, $\mathscr{G}\left(T_{2}\right)$ is ($r-2$)-wise $(2 r)$-intersecting, and $\mathscr{G}\left(T_{3}\right)$ is $(r-1)$-wise ($3 r-1$)-intersecting, we have

$$
\begin{equation*}
w_{p}(\mathscr{G}) \leq p^{t+2} \cdot p^{4}+(t+2) p^{t+1} q \cdot p^{7} \alpha_{4, p}+\binom{t+2}{2} p^{t} q^{2} \cdot p^{7} \alpha_{4, p}^{5}+\binom{t+2}{3} p^{t-1} q^{3} \cdot p^{17} \tag{15}
\end{equation*}
$$

and the RHS is less than ω at $p=1 / 2$ for $t_{r-1} \leq t \leq 2^{r+1}$.

Claim 7. Let $r=7$ and $2 \leq t \leq t_{7}=234$. Then we have (9).
Proof. The case $t=2$ was proved in [33]. Using (13) with Claim 6 we have (9) for $4 \leq t+1 \leq 109$. Thus we may assume that $s \geq t+1 \geq 110$, and we have

$$
w_{p}(\mathscr{G}) \leq w(n, p, 6, s) \leq w_{p}\left(\mathscr{G}_{1}(n, 6,109)\right) \alpha_{6, p}^{s-109} .
$$

If $s \geq t+4$ then the RHS is less than ω at $p=1 / 2$ for $t \leq 278$. Thus we may assume that $s \leq t+3$ and $1 \leq h \leq 3$. Then we repeat the casewise check as in Claim 6. In this case we can replace (15) with the following:

$$
w_{p}(\mathscr{G}) \leq p^{t+2} \cdot p^{4}+(t+2) p^{t+1} q \cdot p^{r+2}+\binom{t+2}{2} p^{t} q^{2} \cdot p^{2 r}+\binom{t+2}{3} p^{t-1} q^{3} \cdot p^{3 r-1} .
$$

Similarly we can prove the following.
Claim 8. Let $r=8$ and $1 \leq t \leq t_{8}=487$. Then we have (9).
Finally we are ready to prove the general case $r \geq 9$.
Claim 9. Let $r \geq 9$ and $1 \leq t \leq t_{r}$. Then we have (9).
Proof. We prove the result by induction on r. We have (9) for $1 \leq t+1 \leq t_{r-1}$ using (13) with our induction hypothesis for $r-1$. Thus we may assume that $s \geq t+1>t_{r-1}$, and we have

$$
w_{p}(\mathscr{G}) \leq w(n, p, r-1, s) \leq w_{p}\left(\mathscr{G}_{1}\left(n, r-1, t_{r-1}\right)\right) \alpha_{r-1, p}^{s-t_{r-1}} .
$$

If $s \geq t+3$ then the RHS is less than ω at $p=1 / 2$ for $t_{r-1} \leq t \leq t_{r}$ by Lemma 8. Thus we may assume that $s \leq t+2$ and $1 \leq h \leq 2$.

Case 9-1. $h=1$. Same as Case 5-1.
Case 9-2. $h=2$. We use the same estimation as in Case 6-2. Then the RHS of (14) is less than ω at $p=1 / 2$ iff

$$
\begin{equation*}
(a-b) / 2 \leq t \leq(a+b) / 2 \tag{16}
\end{equation*}
$$

where $a=3 \cdot 2^{r}-1, b=\sqrt{1+2^{2 r+3}+(8 r+3) 2^{r+1}}$. Since $t_{r-1} \leq t \leq t_{r}$, we have (16).
This completes the proof of (i) of the theorem. Moreover we have proved the inequality (8) if \mathscr{G} is tame and $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$.

Next we show (ii). We include the proof of this part from [33] for self-completeness. Set $\mathscr{G}_{1}=\mathscr{G}_{1}(n, r, t)$. Let $\mathscr{G} \subset 2^{[n]}$ be a (not necessarily shifted) non-trivial r-wise t-intersecting family, and suppose that $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$. By Lemma 11 we can find a tame r-wise t intersecting family \mathscr{G}^{*} with $w_{p}\left(\mathscr{G}^{*}\right)=w_{p}(\mathscr{G})$. If $\mathscr{G}^{*} \not \subset \mathscr{G}_{1}$ then we have already shown that $w_{p}\left(\mathscr{G}^{*}\right)<(1-\gamma) w_{p}\left(\mathscr{G}_{1}\right)$. Thus we may assume that $\mathscr{G}^{*} \subset \mathscr{G}_{1}$, and in particular (by renaming the starting family if necessary) we may assume that $\mathscr{G}^{*}=\sigma_{x y}(\mathscr{G}) \subset \mathscr{G}_{1}$, where $x=t+r, y=x+1$. We note that $|[x] \cap G| \geq x-2$ for all $G \in \mathscr{G}$. Moreover if $|[x] \cap G|=x-2$ then $G \cap\{x, y\}=\{y\}$ and $(G-\{y\}) \cup\{x\} \notin \mathscr{G}$.

For $i \in[x]$ set $\mathscr{G}(i)=\{G \in \mathscr{G}:[y] \backslash G=\{i\}\}$, and for $j \in[x-1]$ and $z \in\{x, y\}$ let $\mathscr{G}_{z}(j)=\{G \in \mathscr{G}:[y] \backslash G=\{j, z\}\}$. Since $\sigma_{x y}(\mathscr{G}) \subset \mathscr{G}_{1}$ we have $\mathscr{G}_{x}(j) \cap \mathscr{G}_{y}(j)=\emptyset$ and so
$w_{p}\left(\mathscr{G}_{x}(j)\right)+w_{p}\left(\mathscr{G}_{y}(j)\right) \leq p^{x-1} q^{2} . \operatorname{Set} \mathscr{G}(\emptyset)=\{G \in \mathscr{G}:[x] \subset G\}, \mathscr{G}_{x y}=\{G \in \mathscr{G}: G \cap[y]=$ $[x-1]\}$ and let $e=\min _{i \in[x]} w_{p}(\mathscr{G}(i))$. Then we have

$$
\begin{align*}
w_{p}(\mathscr{G}) & =\sum_{i \in[x]} w_{p}(\mathscr{G}(i))+\sum_{j \in[x-1]}\left(w_{p}\left(\mathscr{G}_{x}(j)\right)+w_{p}\left(\mathscr{G}_{y}(j)\right)\right)+w_{p}(\mathscr{G}(\emptyset))+w_{p}\left(\mathscr{C}_{x y}\right) \tag{17}\\
& \leq e+(x-1) p^{x} q+(x-1) p^{x-1} q^{2}+p^{x}+p^{x-1} q^{2}=e+(\eta-1) p^{x} q, \tag{18}
\end{align*}
$$

where $\eta=\frac{x}{p}+\frac{1}{q}$. Note that $e \leq p^{x} q$, and (18) coincides $w_{p}\left(\mathscr{G}_{1}\right)=\eta p^{x} q$ iff $e=p^{x} q$. If there is some $j \in[x-1]$ such that $\mathscr{G}_{x}(j) \cup \mathscr{G}_{y}(j)=\emptyset$, then by (17) we get $w_{p}(\mathscr{G}) \leq$ $w_{p}\left(\mathscr{G}_{1}\right)-p^{x-1} q^{2}=(1-q /(\eta p)) w_{p}\left(\mathscr{G}_{1}\right)$, and we are done. Thus we may assume that

$$
\begin{equation*}
\mathscr{G}_{x}(j) \cup \mathscr{G}_{y}(j) \neq \emptyset \text { for all } j \in[x-1] . \tag{19}
\end{equation*}
$$

To prove $w_{p}(\mathscr{G})<(1-\gamma) w_{p}\left(\mathscr{G}_{1}\right)$ by contradiction, let us assume that for any $\gamma>0$ and any n_{0} there is some $n>n_{0}$ such that

$$
\begin{equation*}
w_{p}(\mathscr{G})>(1-\gamma) w_{p}\left(\mathscr{G}_{1}\right)=(1-\gamma) \eta p^{x} q . \tag{20}
\end{equation*}
$$

By (18) and (20) we have $e>(1-\gamma \eta) p^{x} q$. This means, letting $\mathscr{H}(i)=\{G \backslash[y]: G \in \mathscr{G}(i)\}$ and $Y=[y+1, n]$,

$$
\begin{equation*}
w_{p}(\mathscr{H}(i): Y) \text { only misses at most } \gamma \eta p \text {-weight for all } i \in[x] . \tag{21}
\end{equation*}
$$

Since $\mathscr{G} \in \mathbf{X}^{1}(n, r, t)$ both $\bigcup_{j \in[x-1]} \mathscr{G}_{x}(j)$ and $\bigcup_{j \in[x-1]} \mathscr{G}_{y}(j)$ are non-empty. Using this with (19), we can choose $G \in \mathscr{G}_{x}(j)$ and $G^{\prime} \in \mathscr{G}_{y}\left(j^{\prime}\right)$ with $j \neq j^{\prime}$, say, $j=x-1, j^{\prime}=x-2$. Let $L=[r-2]$ and $\mathscr{H}^{*}=\bigcap_{\ell \in L} \mathscr{H}(\ell)$. Then by (21) we have

$$
\begin{equation*}
w_{p}\left(\mathscr{H}^{*}: Y\right)>1-(r-2) \gamma \eta . \tag{22}
\end{equation*}
$$

If $\mathscr{H}^{*} \subset 2^{Y}$ is not ($r-2$)-wise 1-intersecting, then we can find $H_{\ell} \in \mathscr{H}^{*}$ for $\ell \in L$ so that $H_{1} \cap \cdots \cap H_{r-2}=\emptyset$. Setting $G_{\ell}:=([y]-\{\ell\}) \cup H_{\ell} \in \mathscr{G}$ we have $\left|G_{1} \cap \cdots \cap G_{r-2} \cap G \cap G^{\prime}\right|=$ $t-1$, which contradicts the r-wise t-intersecting property of \mathscr{G}. Thus \mathscr{H}^{*} is $(r-2)$-wise 1 -intersecting and $w_{p}\left(\mathscr{H}^{*}: Y\right) \leq p$ by (2). But this contradicts (22) because we can choose γ so small that $p \ll 1-(r-2) \gamma \eta$.

4. Application

4.1. Proof of Theorem 2. We deduce (ii) from Theorem 4, then (i) follows from (ii). We include the proof of this part from [33] for self-completeness. Assuming the negation of Theorem 2 for some fixed $(r, t) \in A$, we will construct a counterexample to Theorem 4 (ii).

For reals $0<b<a$ we write $a \pm b$ to mean the open interval $(a-b, a+b)$ and $n(a \pm b)$ means $((a-b) n,(a+b) n) \cap \mathbb{N}$. Fix $\gamma_{0}:=\gamma_{\text {Thm } 4}$ and $\varepsilon_{0}:=\varepsilon_{\text {Thm } 4}$ from Theorem 4. For fixed r and t we note that $f(p):=w^{*}(n, p, r, t)=(t+r) p^{t+r-1} q+p^{t+r}$ is a uniformly continuous function of p on $\frac{1}{2} \pm \varepsilon_{0}$. Let $\gamma=\frac{\gamma_{0}}{4}, \varepsilon=\frac{\varepsilon_{0}}{2}$, and $I=\frac{1}{2} \pm \varepsilon$.

Choose $\varepsilon_{1} \ll \varepsilon$ so that

$$
\begin{equation*}
(1-3 \gamma) f(p)>(1-4 \gamma) f(p+\delta) \tag{23}
\end{equation*}
$$

holds for all $p \in I$ and all $0<\delta \leq \varepsilon_{1}$. Choose n_{1} so that

$$
\begin{equation*}
\sum_{i \in J}\binom{n}{i} p_{0}^{i}\left(1-p_{0}\right)^{n-i}>(1-3 \gamma) /(1-2 \gamma) \tag{24}
\end{equation*}
$$

holds for all $n>n_{1}$ and all $p_{0} \in I_{0}:=\frac{1}{2} \pm \frac{3 \varepsilon}{2}$, where $J=n\left(p_{0} \pm \varepsilon_{1}\right)$. Choose n_{2} so that

$$
\begin{equation*}
(1-\gamma)\left|\mathscr{F}_{1}(n, k, r, t)\right|>(1-2 \gamma) f(k / n)\binom{n}{k} \tag{25}
\end{equation*}
$$

holds for all $n>n_{2}$ and k with $k / n \in I$. Finally set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$.
Suppose that Theorem 2 fails. Then for our choice of γ, ε and n_{0}, we can find some n, k and $\mathscr{F} \in \mathbf{Y}^{1}(n, k, r, t)$ with $|\mathscr{F}| \geq(1-\gamma)\left|\mathscr{F}_{1}(n, k, r, t)\right|$, where $n>n_{0}$ and $\frac{k}{n} \in I$. We fix n, k and \mathscr{F}, and let $p=\frac{k}{n}$. By (25) we have $|\mathscr{F}|>c\binom{n}{k}$, where $c=(1-2 \gamma) f(p)$. Let $\mathscr{G}=\bigcup_{k \leq i \leq n}\left(\nabla_{i}(\mathscr{F})\right)$ be the collection of all upper shadows of \mathscr{F}, which belongs to $\mathbf{X}^{1}(n, r, t)$. Let $p_{0}=p+\varepsilon_{1} \in I_{0}$.
Claim 10. $\left|\nabla_{i}(\mathscr{F})\right| \geq c\binom{n}{i}$ for $i \in J$.
Proof. Choose a real $x \leq n$ so that $c\binom{n}{k}=\binom{x}{n-k}$. Since $|\mathscr{F}|>c\binom{n}{k}=\binom{x}{n-k}$ the KruskalKatona Theorem implies that $\left|\nabla_{i}(\mathscr{F})\right| \geq\binom{ x}{n-i}$. Thus it suffices to show that $\binom{x}{n-i} \geq c\binom{n}{i}$, or equivalently,

$$
\begin{equation*}
\frac{\binom{x}{n-i}}{\binom{x-k}{n-k}} \geq \frac{c\binom{n}{i}}{c\binom{n}{k}} \tag{26}
\end{equation*}
$$

Since $i \in J$ we have $i>n\left(p_{0}-\varepsilon_{1}\right)=n p=k$, and (26) is equivalent to $i \cdots(k+1) \geq$ $(x-n+i) \cdots(x-n+k+1)$, which follows from $x \leq n$.
By the claim we have

$$
\begin{equation*}
w_{p_{0}}(\mathscr{G}) \geq \sum_{i \in J}\left|\nabla_{i}(\mathscr{F})\right| p_{0}^{i}\left(1-p_{0}\right)^{n-i} \geq c \sum_{i \in J}\binom{n}{i} p_{0}^{i}\left(1-p_{0}\right)^{n-i} . \tag{27}
\end{equation*}
$$

Using (24) and (23), the RHS of (27) is more than

$$
c(1-3 \gamma) /(1-2 \gamma)=(1-3 \gamma) f(p)>(1-4 \gamma) f\left(p+\varepsilon_{1}\right)=\left(1-\gamma_{0}\right) f\left(p_{0}\right)
$$

This means $w_{p_{0}}(\mathscr{G})>\left(1-\gamma_{0}\right) w^{*}\left(n, p_{0}, r, t\right)$, which contradicts Theorem 4 (ii) because $p_{0} \in I_{0}=\frac{1}{2} \pm \frac{3 \varepsilon}{2}=\frac{1}{2} \pm \frac{3 \varepsilon_{0}}{4} \subset \frac{1}{2} \pm \varepsilon_{0}$.
4.2. Proof of Theorem 3. For the cases $t=1,2$, it follows from [18, 12] that $s(n, r, t) \leq$ $s(n, 4, t) \leq\left|\mathscr{F}_{0}\left(n, k_{0}, r, t\right)\right|$ with the only optimal family $\mathscr{F}_{0}\left(n, k_{0}, r, t\right)$. So we may assume that $t \geq 3$, though our proof will be valid for all $(r, t) \in A$. We are going to prove

$$
s(n, r, t)=\max \left\{\left|\mathscr{F}_{0}\left(n, k_{0}, r, t\right)\right|,\left|\mathscr{F}_{1}\left(n, k_{1}, r, t\right)\right|\right\} .
$$

Let $\mathscr{G} \subset 2^{[n]}$ be an r-wise t-intersecting Sperner family with maximal size. If $|\cap \mathscr{G}| \geq t$, say $[t] \subset \bigcap \mathscr{G}$, then $\mathscr{G}^{\prime}=\{G-[t]:[t] \subset G \in \mathscr{G}\}$ is Sperner, and by the Sperner theorem we have $|\mathscr{G}|=\left|\mathscr{G}^{\prime}\right| \leq\binom{ n-t}{\lceil(n-t) / 2\rceil}=\left|\mathscr{F}_{0}\right|$ with equality holding iff $\mathscr{G}^{\prime} \cong\binom{[t+1, n]}{[(n-t) / 2\rceil}$ or $\binom{[t+1, n]}{\lfloor(n-t) / 2\rfloor}$, that is, $\mathscr{G} \cong \mathscr{F}_{0}\left(n, k_{0}, r, t\right)$.

So we assume that $|\cap \mathscr{G}|<t$. Let

$$
u(\mathscr{G})=\max \{i:|G \cap[i+1]| \geq i \text { for all } G \in \mathscr{G}\}
$$

For a permutation τ on $[n]$ let $\tau(\mathscr{G})=\{\tau(G): G \in \mathscr{G}\}$, and define $\tilde{u}(\mathscr{G})=\max _{\tau} u(\tau(\mathscr{G}))$, where the max is taken over all possible vertex permutations. We further assume that this max is attained when τ is the identity, that is, $\tilde{u}(\mathscr{G})=u(\mathscr{G})$. Set $x=t+r$.

First suppose that $\tilde{u}(\mathscr{G}) \geq x-1$, i.e., $|G \cap[x]| \geq x-1$ for all $G \in \mathscr{G}$. For $i \in[x]$ let $\mathscr{G}(i)=\{G \cap[x+1, n]: i \notin G \in \mathscr{G}\}$, and let $\mathscr{G}(\emptyset)=\{G \cap[x+1, n]:[x] \subset G \in \mathscr{G}\}$. Choose i_{0} such that $\left|\mathscr{G}\left(i_{0}\right)\right|=\max _{i}|\mathscr{G}(i)|$. Then we have $|\mathscr{G}| \leq x\left|\mathscr{G}\left(i_{0}\right)\right|+|\mathscr{G}(\emptyset)|$. Set $\mathscr{A}=\mathscr{G}\left(i_{0}\right)$, $\mathscr{B}=\mathscr{G}(\emptyset)$, where both \mathscr{A} and \mathscr{B} are Sperner in $2^{[x+1, n]}$. Moreover we have $\mathscr{A} \cap \Delta(\mathscr{B})=\emptyset$. Thus by Lemma 13 we have

$$
|\mathscr{G}| \leq x|\mathscr{A}|+|\mathscr{B}| \leq x\binom{n-x}{\left\lceil\frac{n-x}{2}\right\rceil}+\binom{n-x}{\left\lceil\frac{n-x}{2}\right\rceil-1}=\left|\mathscr{F}_{1}\left(n, k_{1}, r, t\right)\right|,
$$

with equality holding iff $\mathscr{G} \cong \mathscr{F}_{1}\left(n, k_{1}, r, t\right)$. This completes the proof for the case $\tilde{u}(\mathscr{G}) \geq$ $x-1$.

From now on we assume that $\tilde{u}(\mathscr{G})<x-1$. We will show that

$$
|\mathscr{G}|<\left(1-\frac{\xi}{2}\right) \max \left\{\left|\mathscr{F}_{0}\right|,\left|\mathscr{F}_{1}\right|\right\}
$$

for some $\xi>0$. Let $\mathscr{G}_{\ell}=\mathscr{G} \cap\binom{[n]}{\ell}$ and $L=\left\{\ell: \mathscr{G}_{\ell} \neq \emptyset\right\}$.
Claim 11. $L \subset\left[\left\lfloor\frac{n}{2}\right\rfloor, n\right]$.
Proof. Let a and b be the least and second least element of L respectively, and let $\mathscr{H}=$ $\left(\mathscr{G}-\mathscr{G}_{a}\right) \cup \nabla_{b}\left(\mathscr{G}_{a}\right)$. Then \mathscr{H} is r-wise t-intersecting Sperner. If $a+b<n$ then we have $\left|\nabla_{b}\left(\mathscr{G}_{a}\right)\right|>\left|\mathscr{G}_{a}\right|$ by Lemma 12, which means $|\mathscr{H}|>|\mathscr{G}|$. Thus we may assume $\mid L \cap$ $\left.\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \right\rvert\, \leq 1$. If this number is one, then we repeat the same exchange operation for $a=\min L$ and $b=\left\lfloor\frac{n}{2}\right\rfloor$. Consequently $L \subset\left[\left\lfloor\frac{n}{2}\right\rfloor, n\right]$ follows from the maximality of \mathscr{G}.

Choose $\varepsilon>0$ from Theorem 2 and set $a=\min \left(L \cap\left[\left\lfloor\frac{n}{2}\right\rfloor,\left(\frac{1}{2}+\varepsilon\right) n\right)\right)$. We choose a vertex permutation ρ so that $\tilde{u}\left(\mathscr{G}_{a}\right)=u\left(\rho\left(\mathscr{G}_{a}\right)\right)$. Since $\tilde{u}(\mathscr{G})<x-1$ we still have $u(\rho(\mathscr{G}))<x-1$. We rearrange the vertex set so that ρ is the identity. For a real $p \in(0,1)$, let $f_{1}(p)=p^{t}$, $f_{2}(p)=x p^{x-1}(1-p)+p^{x}$ and $f(p)=\max \left\{f_{1}(p), f_{2}(p)\right\}$. We note that

$$
\begin{equation*}
\max \left\{\left|\mathscr{F}_{0}\left(n, k_{0}, r, t\right)\right|,\left|\mathscr{F}_{1}\left(n, k_{1}, r, t\right)\right|\right\}=\left(f\left(\frac{1}{2}\right)+o(1)\right)\binom{n}{\lfloor n / 2\rfloor} . \tag{28}
\end{equation*}
$$

Claim 12. There exists $\xi>0$ such that $\left|\mathscr{G}_{a}\right|<(1-2 \xi) f\left(\frac{a}{n}\right)\binom{n}{a}$.
Proof. First suppose that \mathscr{G}_{a} is trivial and $[t] \subset G$ for all $G \in \mathscr{G}_{a}$. Since \mathscr{G} is non-trivial we can find $H \in \mathscr{G}$ such that $|[t] \cap H|<t$. Thus $\mathscr{G}_{a}^{\prime}:=\left\{G-[t]: G \in \mathscr{G}_{a}\right\}$ is $(r-1)$-wise 1 -intersecting and

$$
\begin{aligned}
\left|\mathscr{G}_{a}\right| & =\left|\mathscr{G}_{a}^{\prime}\right| \leq m(n-t, a-t, r-1,1)=\binom{n-t-1}{a-t-1} \\
& =\left((a / n)^{t+1}+o(1)\right)\binom{n}{a}<\left(1-\gamma_{1}\right) f_{1}(a / n)\binom{n}{a} .
\end{aligned}
$$

Next suppose that \mathscr{G}_{a} is non-trivial, i.e., $\left|\cap \mathscr{G}_{a}\right|<t$. If $\tilde{u}\left(\mathscr{G}_{a}\right)<x-1$, namely, if $\mathscr{G}_{a} \in \mathbf{Y}^{1}(n, a, r, t)$, then $\left|\mathscr{G}_{a}\right|<\left(1-\gamma_{2}\right) f_{2}(a / n)\binom{n}{a}$ follows from Theorem 2. Thus we may assume that $\tilde{u}\left(\mathscr{G}_{a}\right)=u\left(\mathscr{G}_{a}\right) \geq x-1$.

Let $\mathscr{G}_{a}(i)=\left\{G \cap[x+1, n]: i \notin G \in \mathscr{G}_{a}\right\}$ and $\mathscr{G}_{a}(\emptyset)=\left\{G-[x]:[x] \subset G \in \mathscr{G}_{a}\right\}$. Set $e=\min _{i \in[x]}\left|\mathscr{G}_{a}(i)\right|$. Since $\left|\mathscr{G}_{a}\right|=\sum_{i=1}^{x}\left|\mathscr{G}_{a}(i)\right|+\left|\mathscr{G}_{a}(\emptyset)\right|$ we have

$$
\begin{equation*}
\left|\mathscr{G}_{a}\right| \leq e+(x-1)\binom{n-x}{a-x+1}+\binom{n-x}{a-x} . \tag{29}
\end{equation*}
$$

Suppose that $\left|\mathscr{G}_{a}\right|>\left(1-\gamma_{3}\right) f_{2}(a / n)\binom{n}{a}=\left(1-\gamma_{3}\right)(1+o(1))\left(x\binom{n-x}{a-x+1}+\binom{n-x}{a-x}\right)$ holds for any $\gamma_{3}>0$. Then by (29) we have $e>\left(1-\gamma_{3}(x+2)\right)\binom{n-x}{a-x+1}$. This means $\mathscr{G}_{a}(i)$ only misses at most $\gamma_{3}(x+2)$ portion of $\binom{[x+1, n]}{a-x+1}$ for all $i \in[x]$. Since $u(\mathscr{G})<x-1$ we can find some $G \in \mathscr{G}-\mathscr{G}_{a}$ such that $|G \cap[x]| \leq x-2$, say, $G \nexists x-1, x$. Let $\mathscr{G}_{a}^{*}=\bigcap_{i=1}^{r-1} \mathscr{G}_{a}(i)$. Then we have

$$
\begin{equation*}
\left|\mathscr{G}_{a}^{*}\right|>\left(1-(r-1) \gamma_{3}(x+2)\right)\binom{n-x}{a-x+1} . \tag{30}
\end{equation*}
$$

If $\mathscr{G}_{a}^{*} \subset\binom{[x+1, n]}{a-x+1}$ is not $(r-1)$-wise 1-intersecting, then we can find $G_{i}^{*} \in \mathscr{G}_{a}^{*}$ for $i \in[r-1]$ so that $G_{1}^{*} \cap \cdots \cap G_{r-1}^{*}=\emptyset$. Setting $G_{i}:=([x]-\{i\}) \cup G_{i}^{*} \in \mathscr{G}$ we have $\mid G_{1} \cap \cdots \cap G_{r-1} \cap$ $G \mid=t-1$, which contradicts the r-wise t-intersecting property of \mathscr{G}. Thus \mathscr{G}_{a}^{*} is $(r-1)$ wise 1-intersecting and $\left|\mathscr{G}_{a}^{*}\right| \leq\binom{ n-x-1}{a-x}$, which contradicts (30) because we can choose $\gamma_{3}>0$ arbitrarily small. Therefore there is some $\gamma_{3}>0$ such that $\left|\mathscr{G}_{a}\right|<\left(1-\gamma_{3}\right) f_{2}(a / n)\binom{n}{a}$.

Finally we get the claim by setting $\xi=(1 / 2) \max \left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$.
Since f is continuous, we can chose a constant $\mu, 0<\mu \ll \varepsilon$, so that

$$
(1-2 \xi) f\left(\frac{1}{2}+\mu\right)<(1-\xi) f\left(\frac{1}{2}\right) .
$$

Set $M=M(\mathscr{G})=\left\{k \in\left[\left\lfloor\frac{n}{2}\right\rfloor,\left(\frac{1}{2}+\mu\right) n\right): \mathscr{G}_{k} \neq \emptyset\right\}$.
Claim 13. $\sum_{k \in M}\left|\mathscr{G}_{k}\right| /\binom{n}{k}<(1-\xi) f\left(\frac{1}{2}\right)$.
Proof. It will be shown by induction on $m=|M|$. The case $M=\{k\}$ follows from Claim 12; in fact noting that f is increasing on $\left[\frac{1}{2}, \frac{1}{2}+\mu\right]$ we have

$$
\left|\mathscr{G}_{k}\right| /\binom{n}{k}<(1-2 \xi) f\left(\frac{k}{n}\right)<(1-2 \xi) f\left(\frac{1}{2}+\mu\right)<(1-\xi) f\left(\frac{1}{2}\right) .
$$

Next we assume that our claim holds for $m-1$. Let a and b be the least and second least element of M, and let $\mathscr{H}=\left(\mathscr{G}-\mathscr{G}_{a}\right) \cup \nabla_{b}\left(\mathscr{G}_{a}\right)$. Then \mathscr{H} is r-wise t-intersecting Sperner and $M(\mathscr{H})=M(\mathscr{G})-\{a\}$. By Lemma 12, we have $\left|\mathscr{G}_{a}\right| /\binom{n}{a} \leq\left|\nabla_{b}\left(\mathscr{G}_{a}\right)\right| /\binom{n}{b}$, which means

$$
\sum_{k \in M(\mathscr{G})} \frac{\left|\mathscr{G}_{k}\right|}{\binom{n}{k}} \leq \sum_{k \in M(\mathscr{H})} \frac{\left|\mathscr{H}_{k}\right|}{\binom{n}{k}},
$$

and the RHS is less than $(1-\xi) f\left(\frac{1}{2}\right)$ by the induction hypothesis.
By Claim 13 we have

$$
(1-\xi) f\left(\frac{1}{2}\right)>\sum_{k \in M} \frac{\left|\mathscr{G}_{k}\right|}{\binom{n}{k}} \geq \frac{1}{\binom{n}{n / 2\rfloor}} \sum_{k \in M}\left|\mathscr{G}_{k}\right| .
$$

On the other hand, by the Yamamoto inequality, we have

$$
1 \geq \sum_{k \in L-M} \frac{\left|\mathscr{C}_{k}\right|}{\binom{n}{k}} \geq \frac{1}{\left(\begin{array}{c}
n \\
\left(\frac{1}{2}+\mu\right) n
\end{array}\right.} \sum_{k \in L-M}\left|\mathscr{G}_{k}\right|,
$$

where we used $L-M \subset\left[\left(\frac{1}{2}+\mu\right) n, n\right]$ by Claim 11. Consequently we have

$$
|\mathscr{G}|=\sum_{k \in L}\left|\mathscr{G}_{k}\right|<(1-\xi) f\left(\frac{1}{2}\right)\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\left(\frac{1}{2}+\mu\right) n}<\left(1-\frac{\xi}{2}\right) f\left(\frac{1}{2}\right)\binom{n}{\lfloor n / 2\rfloor},
$$

and the RHS is less than $\max \left\{\left|\mathscr{F}_{0}\right|,\left|\mathscr{F}_{1}\right|\right\}$ by (28).
4.3. Proof of Theorem 6. Let r and t be fixed. Assuming the negation of Theorem 6, we will construct a counterexample to (i) of Theorem 4. Fix $\varepsilon:=\varepsilon_{\mathrm{Thm} 4}$ from Theorem 4 and let $p_{0}=\frac{1}{2}-\frac{\varepsilon}{2}$. Since $p_{0}<\frac{1}{2}$ and $t \leq 2^{r}-r-1$ we have $w_{p_{0}}\left(\mathscr{G}_{0}(n, r, t)\right)=p_{0}^{t}>$ $w_{p_{0}}\left(\mathscr{G}_{1}(n, r, t)\right)$ by Lemma 1 . Thus we can choose $\gamma>0$ so that

$$
\begin{equation*}
(1-2 \gamma) p_{0}^{t}>w_{p_{0}}\left(\mathscr{G}_{1}(n, r, t)\right) . \tag{31}
\end{equation*}
$$

Then choose n_{0} so that

$$
\begin{equation*}
\sum_{i \in J}\binom{n-t}{i-t} p_{0}^{i}\left(1-p_{0}\right)^{n-i}>p_{0}^{t}(1-2 \gamma) /(1-\gamma) \tag{32}
\end{equation*}
$$

holds for all $n>n_{0}$, where $J=\left(\left(p_{0}-\frac{\varepsilon}{2}\right) n,\left(p_{0}+\frac{\varepsilon}{2}\right) n\right) \cap \mathbb{N}$.
Suppose that Theorem 6 fails. Then for our choice of ε, γ and n_{0}, we can find some n, k and $\mathscr{F} \in \mathbf{Y}^{0}(n, k, r, t)$ with $|\mathscr{F}| \geq(1-\gamma)\binom{n-t}{k-t}$, where $n>n_{0}$ and $\frac{k}{n}<\frac{1}{2}-\varepsilon=p_{0}-\frac{\varepsilon}{2}$. We fix n, k and \mathscr{F}. Let $\mathscr{G}=\bigcup_{k \leq i \leq n}\left(\nabla_{i}(\mathscr{F})\right)$ be the collection of all upper shadows of \mathscr{F}, which is non-trivial r-wise t-intersecting, i.e., $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$.

Claim 14. $\left|\nabla_{i}(\mathscr{F})\right| \geq(1-\gamma)\binom{n-t}{i-t}$ for $i \in J$.
Proof. Choose a real $x \leq n-t$ so that $(1-\gamma)\binom{n-t}{k-t}=\binom{x}{n-k}$. Since $|\mathscr{F}| \geq\binom{ x}{n-k}$ the Kruskal-Katona Theorem implies that $\left|\nabla_{i}(\mathscr{F})\right| \geq\binom{ x}{n-i}$. Thus it suffices to show that $\binom{x}{n-i} \geq(1-\gamma)\binom{n-t}{i-t}$, or equivalently,

$$
\begin{equation*}
\frac{\binom{x}{n-i}}{\binom{x}{n-k}} \geq \frac{(1-\gamma)\binom{n-t}{i-t}}{(1-\gamma)\binom{n-t}{k-t}} . \tag{33}
\end{equation*}
$$

Since $i \in J$ we have $i>\left(p_{0}-\frac{\varepsilon}{2}\right) n>k$, and (33) is equivalent to $(i-t) \cdots(k-t+1) \geq$ $(x-n+i) \cdots(x-n+k+1)$, which follows from $x \leq n-t$.

By the claim we have

$$
\begin{equation*}
w_{p_{0}}(\mathscr{G}) \geq \sum_{i \in J}\left|\nabla_{i}(\mathscr{F})\right| p_{0}^{i}\left(1-p_{0}\right)^{n-i} \geq(1-\gamma) \sum_{i \in J}\binom{n-t}{i-t} p_{0}^{i}\left(1-p_{0}\right)^{n-i} . \tag{34}
\end{equation*}
$$

By (32) and (31), the RHS of (34) is more than $(1-\gamma) \cdot p_{0}^{t}(1-2 \gamma) /(1-\gamma)=p_{0}^{t}(1-2 \gamma)>$ $w_{p_{0}}\left(\mathscr{G}_{1}(n, r, t)\right)$, which contradicts Theorem 4 (i).
4.4. Proof of Theorem 7. Let $\varepsilon>0$ and $p<\frac{1}{2}-\varepsilon$ be given. By Theorem 6 we can find $0<\gamma \ll 1 / 4$ and n_{0} so that $m^{*}(n, k, r, t)<(1-2 \gamma)\binom{n-t}{k-t}$ for all $n>n_{0}$ and k with $\frac{k}{n}<\frac{1}{2}-\frac{\varepsilon}{2}$. Choose $0<\delta \ll \varepsilon$ so that $(p-\delta, p+\delta) \subset\left(0, \frac{1}{2}-\delta\right)$. Choose n_{1} so that

$$
\begin{equation*}
(1-2 \gamma) \sum_{k \in J}\binom{n-t}{k-t} p^{k} q^{n-k}+\sum_{k \notin J}\binom{n}{k} p^{k} q^{n-k}<(1-\gamma) p^{t} \tag{35}
\end{equation*}
$$

holds for all $n>n_{1}$, where $J=((p-\boldsymbol{\delta}) n,(p+\boldsymbol{\delta}) n) \cap \mathbb{N}$. Let $n>\max \left\{n_{0}, n_{1}\right\}$ and choose $\mathscr{G} \in \mathbf{X}^{0}(n, r, t)$ with $w_{p}(\mathscr{G})=w^{*}(n, p, r, t)$. Let $\mathscr{G}_{k}=\mathscr{G} \cap\binom{[n]}{k}$ for $k \in J$.

If $\mathscr{G}_{k} \in \mathbf{Y}^{0}(n, k, r, t)$ then by Theorem 6 we have $\left|\mathscr{G}_{k}\right|<(1-2 \gamma)\binom{n-t}{k-t}$. If \mathscr{G}_{k} fixes t vertices, say $[t]$, then $\mathscr{G}_{k}^{\prime}:=\{G-[t]: G \in \mathscr{G}\}$ is $(r-1)$-wise 1-intersecting. (Otherwise \mathscr{G} fixes $[t]$.) Thus we have $\left|\mathscr{G}_{k}\right|=\left|\mathscr{G}_{k}^{\prime}\right| \leq\binom{ n-t-1}{k-t-1}$. Consequently, in both cases, we have

$$
\begin{equation*}
\left|\mathscr{G}_{k}\right|<(1-2 \gamma)\binom{n-t}{k-t} . \tag{36}
\end{equation*}
$$

Using (36) and (35), we have

$$
w_{p}(\mathscr{G}) \leq \sum_{k \in J}\left|\mathscr{G}_{k}\right| p^{k} q^{n-k}+\sum_{k \notin J}\binom{n}{k} p^{k} q^{n-k}<(1-\gamma) p^{t},
$$

and this is true for all $n \geq t$ by Lemma 10 .

References

[1] R. Ahlswede, L.H. Khachatrian. The complete nontrivial-intersection theorem for systems of finite sets. J. Combin. Theory (A), 76:121-138, 1996.
[2] R. Ahlswede, L.H. Khachatrian. The complete intersection theorem for systems of finite sets. European J. Combin., 18:125-136, 1997.
[3] R. Ahlswede, L.H. Khachatrian. The diametric theorem in Hamming spaces - Optimal anticodes. Adv. in Appl. Math., 20:429-449, 1998.
[4] A. Brace, D. E. Daykin. A finite set covering theorem. Bull. Austral. Math. Soc., 5:197-202, 1971.
[5] C. Bey, K. Engel. Old and new results for the weighted t-intersection problem via AK-methods. Numbers, Information and Complexity, Althofer, Ingo, Eds. et al., Dordrecht, Kluwer Academic Publishers, 45-74, 2000.
[6] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313-320, 1961.
[7] I. Dinur, S. Safra. On the Hardness of Approximating Minimum Vertex-Cover. Annals of Mathematics, 162:439-485, 2005.
[8] P. Frankl. On Sperner families satisfying an additional condition. J. Combin. Theory (A), 20:1-11, 1976.
[9] P. Frankl. The Erdős-Ko-Rado theorem is true for $n=c k t$. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthey, 1976), Vol. I, 365-375, Colloq. math. Soc. János Bolyai, 18, North-Holland, 1978.
[10] P. Frankl. On intersecting families of finite sets. J. Combin. Theory (A), 24:141-161, 1978.
[11] P. Frankl. Multiply-intersecting families. J. Combin. Theory (B), 53:195-234, 1991.
[12] P. Frankl, N. Tokushige. Weighted 3-wise 2-intersecting families. J. Combin. Theory (A) 100:94-115, 2002.
[13] P. Frankl, N. Tokushige. Weighted multiply intersecting families. Studia Sci. Math. Hungarica 40:287291, 2003.
[14] P. Frankl, N. Tokushige. Random walks and multiply intersecting families. J. Combin. Theory (A), 109:121-134, 2005.
[15] P. Frankl, N. Tokushige. Weighted non-trivial multiply intersecting families. Combinatorica, 26 37-46, 2006.
[16] E. Friedgut. On the measure of intersecting families, uniqueness and stability. preprint.
[17] H.-D.O.F. Gronau. On Sperner families in which no 3 -sets have an empty intersection. Acta Cybernet., 4:213-220, 1978.
[18] H.-D.O.F. Gronau. On Sperner families in which no k-sets have an empty intersection. J. Combin. Theory (A), 28:54-63, 1980.

NORIHIDE TOKUSHIGE

[19] H.-D.O.F. Gronau. On Sperner families in which no k-sets have an empty intersection II. J. Combin. Theory (A), 30:298-316, 1981.
[20] H.-D.O.F. Gronau. On Sperner families in which no k-sets have an empty intersection III. Combinatorica, 2:25-36, 1982.
[21] A. J. W. Hilton, E. C. Milner. Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford, 18:369-384, 1967.
[22] G.O.H. Katona. Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hung., 15:329337, 1964.
[23] G.O.H. Katona. A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966 (Akademiai Kiadó, 1968) 187-207.
[24] J.B. Kruskal. The number of simplices in a complex, in: Math. Opt. Techniques (Univ. of Calif. Press, 1963) 251-278.
[25] E.C. Milner. A combinatorial theorem on systems of sets. J. London Math. Soc., 43:204-206, 1968.
[26] D. Mubayi. An intersection theorem for four sets. Advances in Mathematics, to appear.
[27] D. Mubayi, J. Verstraëte. Proof of a conjecture of Erdős on triangles in set-systems. Combinatorica, 25:599-614, 2005.
[28] E. Sperner. Ein Satz über Untermengen einer endlichen Mente. Math. Zeitschrift, 27:544-548, 1928.
[29] N. Tokushige. Intersecting families - uniform versus weighted. Ryukyu Math. J., 18:89-103, 2005.
[30] N. Tokushige. Extending the Erdős-Ko-Rado theorem. J. Combin. Designs, 14:52-55, 2006.
[31] N. Tokushige. The maximum size of 3-wise t-intersecting families. European J. Combin, 28:152-166, 2007.
[32] N. Tokushige. EKR type inequalities for 4-wise intersecting families. J. Combin. Theory (A), In Press, Corrected Proof, Available online 15 September 2006.
[33] N. Tokushige. Brace-Daykin type inequalities for intersecting families. European J. Combin, In Press, Corrected Proof, Available online 13 October 2006
[34] R.M. Wilson. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica, 4:247-257, 1984.
[35] K. Yamamoto. Logarithmic order of free distributive lattices. J. Math. Soc. Japan, 6:343-353, 1954.
College of Education, Ryukyu University, Nishihara, Okinawa, 903-0213 Japan
E-mail address: hide@edu.u-ryukyu.ac.jp

