MULTIPLY-INTERSECTING FAMILIES REVISITED

NORIHIDE TOKUSHIGE

ABSTRACT. Motivated by the Frankl's results in [11] ("Multiply-intersecting families," J. Combin. Theory (B) 1991), we consider some problems concerning the maximum size of multiply-intersecting families with additional conditions. Among other results, we show the following version of the Erdős–Ko–Rado theorem: for all $r \ge 8$ and $1 \le t \le 2^{r+1} - 3r - 1$ there exist positive constants ε and n_0 such that if $n > n_0$ and $|\frac{k}{n} - \frac{1}{2}| < \varepsilon$ then *r*-wise *t*-intersecting *k*-uniform families on *n* vertices have size at most max $\{\binom{n-t}{k-t}, (t+r)\binom{n-t-r}{k-t-r+1} + \binom{n-t-r}{k-t-r}\}$.

1. INTRODUCTION

A family (or hypergraph) $\mathscr{G} \subset 2^{[n]}$ is called *r*-wise *t*-intersecting if $|G_1 \cap \cdots \cap G_r| \ge t$ holds for all $G_1, \ldots, G_r \in \mathscr{G}$. The aim of this paper is to find largest *r*-wise *t*-intersecting families with some additional conditions, which extends some of Frankl's results and his proof technique developed in [11]. Let us define a typical *r*-wise *t*-intersecting family $\mathscr{G}_i(n, r, t)$ and its *k*-uniform subfamily $\mathscr{F}_i(n, k, r, t)$ as follows:

$$\mathcal{G}_i(n,r,t) = \{G \subset [n] : |G \cap [t+ri]| \ge t + (r-1)i\},$$

$$\mathcal{F}_i(n,k,r,t) = \mathcal{G}_i(n,r,t) \cap {[n] \choose k}.$$

An *r*-wise *t*-intersecting family \mathscr{G} is called *non-trivial* if $|\bigcap \mathscr{G}| < t$, where $\bigcap \mathscr{G} := \bigcap_{G \in \mathscr{G}} G$. Two families $\mathscr{G}, \mathscr{G}' \subset 2^{[n]}$ are said to be isomorphic and denoted by $\mathscr{G} \cong \mathscr{G}'$ if there exists a vertex permutation τ on [n] such that $\mathscr{G}' = \{\{\tau(g) : g \in G\} : G \in \mathscr{G}\}.$

Let m(n,k,r,t) be the maximal size of k-uniform r-wise t-intersecting families on n vertices. To determine m(n,k,r,t) is one of the oldest problems in extremal set theory, which is still widely open. The case r = 2 was observed by Erdős–Ko–Rado[6], Frankl[9], Wilson[34], and then $m(n,k,2,t) = \max_i |\mathscr{F}_i(n,k,2,t)|$ was finally proved by Ahlswede and Khachatrian[2]. Frankl[8] showed $m(n,k,r,1) = |\mathscr{F}_0(n,k,r,1)|$ if $(r-1)n \ge rk$, see also [20, 27]. Partial results for the cases $r \ge 3$ and $t \ge 2$ are found in [12, 14, 29, 30, 31, 32]. All known results suggest

$$m(n,k,r,t) = \max_{i} |\mathscr{F}_{i}(n,k,r,t)|$$

Date: February 22, 2007, 02:10pm.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 05D05 Secondary: 05C65.

Key words and phrases. Erdős-Ko-Rado Theorem; intersecting family; Sperner family;

The author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027.

in general, and we will consider the case when the maximum is attained by \mathscr{F}_0 or \mathscr{F}_1 . To state our result let us define a list A of acceptable parameters as follows.

$$A = \{(r,t) : r \ge 5, 1 \le t \le 2^{r+1} - 3r - 1\} - \{(5,1), (5,2), (5,3), (5,4), (6,1), (6,2), (6,3), (7,1)\}.$$
 (1)

Theorem 1. Let $(r,t) \in A$ be fixed. Then there exist positive constants ε , n_0 such that

 $m(n,k,r,t) = \max\{|\mathscr{F}_0(n,k,r,t)|, |\mathscr{F}_1(n,k,r,t)|\}$

holds for all $n > n_0$ and k with $|\frac{k}{n} - \frac{1}{2}| < \varepsilon$. Moreover $\mathscr{F}_0(n, k, r, t)$ and $\mathscr{F}_1(n, k, r, t)$ are the only optimal configurations (up to isomorphism).

We note that $|\mathscr{F}_0(n,k,r,t)| = \binom{n-t}{k-t}$ and $|\mathscr{F}_1(n,k,r,t)| = (t+r)\binom{n-t-r}{k-t-r+1} + \binom{n-t-r}{k-t-r}$. Some computation shows that if $(r,t) \in A$ and $r \ll k$ then $\max\{|\mathscr{F}_0|, |\mathscr{F}_1|\}$ is attained by

$$\begin{cases} \mathscr{F}_0(n,k,r,t) & \text{if } 1 \le t \le 2^r - r - 2, \text{ or } t = 2^r - r - 1 \text{ and } n \ge 2k - 2^r + \lceil r/2 \rceil + 3, \\ \mathscr{F}_1(n,k,r,t) & \text{if } t \ge 2^r - r, \text{ or } t = 2^r - r - 1 \text{ and } n \le 2k - 2^r + \lceil r/2 \rceil + 2. \end{cases}$$

Conjecture 1. Theorem 1 is true for all $r \ge 3$ and $1 \le t \le 2^{r+1} - 3r - 1$.

Let $m^*(n,k,r,t)$ be the maximal size of non-trivial k-uniform r-wise t-intersecting families on *n* vertices. Allswede and Khachatrian[1] determined $m^*(n,k,2,t)$ completely, which included earlier results of Hilton-Milner[21] and Frankl[10]. In [33] a k-uniform version of the Brace–Daykin theorem [4] is considered for $m^*(n,k,r > 7,2)$ and $k/n \approx 1/2$. To state our result let us define some families of k-uniform hypergraphs as follows.

$$\begin{split} \mathbf{F}(n,k,r,t) &= \{\mathscr{F} \subset {[n] \choose k} : \mathscr{F} \text{ is } r \text{-wise } t \text{-intersecting} \}, \\ \mathbf{F}_j(n,k,r,t) &= \{\mathscr{F} \subset {[n] \choose k} : \mathscr{F} \subset \mathscr{F}' \text{ for some } \mathscr{F}' \cong \mathscr{F}_j(n,k,r,t) \}, \\ \mathbf{Y}^i(n,k,r,t) &= \mathbf{F}(n,k,r,t) - \bigcup_{0 \le j \le i} \mathbf{F}_j(n,k,r,t). \end{split}$$

For fixed n, k, r, t, we clearly have $\mathbf{F}_j \subset \mathbf{F}$. We are interested in $m^* = \max\{|\mathscr{F}| : \mathscr{F} \in \mathbf{Y}^0\}$. It seems that hypergraphs in **F** with nearly largest size only come from some \mathbf{F}_i , moreover they are stable in a sense, namely, $\max\{|\mathscr{F}|:\mathscr{F}\in\mathbf{Y}^1\}<(1-\gamma)m^*$ for some fixed constant $\gamma > 0$. (See [16, 26] for more about stability type results.) We verify this phenomenon in the case $t \le 2^{r+1} - 3r - 1$ and $k/n \approx 1/2$.

Theorem 2. Let $(r,t) \in A$ be fixed, where A is defined by (1). Then there exist positive constants γ, ε, n_0 such that the following (i) and (ii) are true for all $n > n_0$ and k with $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon.$

- (i) $m^*(n,k,r,t) = |\mathscr{F}_1(n,k,r,t)|.$ (ii) If $\mathscr{F} \in \mathbf{Y}^1(n,k,r,t)$ then $|\mathscr{F}| < (1-\gamma)m^*(n,k,r,t).$

The above result immediately implies Theorem 1. We also apply this result to get a Sperner type inequality. A family $\mathscr{G} \subset 2^{[n]}$ is called a Sperner family if $G \not\subset G'$ holds for all distinct $G, G' \in \mathscr{G}$. Let s(n, r, t) be the maximal size of *r*-wise *t*-intersecting Sperner families on *n* vertices. Milner[25] proved $s(n, r = 2, t) = \binom{n}{\lceil (n+t)/2 \rceil}$. Frankl[8] and Gronau[17, 18, 19, 20] determined s(n, r = 3, t = 1) for $n \ge 53$. Gronau[18] also proved $s(n, r \ge 4, t = 1) = \binom{n-1}{\lceil (n-1)/2 \rceil}$ for all *n*. For sufficiently large *n*, it was proved that $s(n, r \ge 4, t = 2) = \binom{n-2}{\lceil (n-2)/2 \rceil}$ in [12], $s(n, r, t) = \binom{n-t}{\lceil (n-t)/2 \rceil}$ for $r \ge 5$ and $1 \le t \le 2^{r-2} \log 2 - 1$ in [29], and s(n, r = 3, t = 2) was determined in [12, 14]. Using Theorem 2 we prove the following.

Theorem 3. Let $r \ge 7$ and $1 \le t \le 2^{r+1} - 3r - 1$. Then there exists n_0 such that

$$s(n,r,t) = \begin{cases} |\mathscr{F}_0(n,k_0,r,t)| & \text{if } 1 \le t \le 2^r - r - 2\\ |\mathscr{F}_1(n,k_1,r,t)| & \text{if } 2^r - r - 1 \le t \le 2^{r+1} - 3r - 1 \end{cases}$$

for all $n > n_0$, where $k_0 \in \{t + \lceil \frac{n-t}{2} \rceil, t + \lfloor \frac{n-t}{2} \rfloor\}$ and $k_1 = t + r - 1 + \lceil \frac{n-t-r}{2} \rceil$. Moreover $\mathscr{F}_0(n, k_0, r, t)$ and $\mathscr{F}_1(n, k_1, r, t)$ are the only optimal configurations (up to isomorphism).

Conjecture 2. Theorem 3 is true for $4 \le r \le 6$ as well.

Due to the results mentioned above [18, 12], the conjecture is true for t = 1, 2. Our proof of Theorem 3 is valid for all $(r,t) \in A$, and the conjecture is open for $(r,t) \in \{(4,t) : 3 \le t \le 19\} \cup \{(5,3), (5,4), (6,3)\}$. The conjecture fails for r = 3. In fact it is known from [8, 17, 14] that $s(n = 2m, 3, 1) = \binom{n-1}{m} + 1$, $s(n = 2m + 1, 3, 2) = \binom{n-2}{m} + 2$ (for *n* large enough). The exact value of s(n, 3, 3) is not known, while $s(n = 2m, 3, 3) \ge \binom{n-3}{m-1} + 3$.

Finally we introduce a weighted version of Frankl's result in [11], which was a starting point of this research. Throughout this paper, p and q = 1 - p denote positive real numbers. For a family $\mathscr{G} \subset 2^X$ we define the p-weight of \mathscr{G} , denoted by $w_p(\mathscr{G} : X)$, as follows:

$$w_p(\mathscr{G}:X) = \sum_{G \in \mathscr{G}} p^{|G|} q^{|X| - |G|} = \sum_{i=0}^{|X|} \left| \mathscr{G} \cap {X \choose i} \right| p^i q^{|X| - i}.$$

We simply write $w_p(\mathcal{G})$ for the case X = [n].

Let w(n, p, r, t) be the maximal *p*-weight of *r*-wise *t*-intersecting families on *n* vertices, and let $w^*(n, p, r, t)$ be the maximal *p*-weight of non-trivial *r*-wise *t*-intersecting families on *n* vertices. It might be natural to expect

$$w(n, p, r, t) = \max_{i} w_{p}(\mathscr{G}_{i}(n, r, t)).$$

Ahlswede and Khachatrian proved that this is true for r = 2 in [3] (cf. [5, 7, 29]). This includes the Katona theorem[22] about w(n, 1/2, 2, t). It is shown in [13] that

$$w(n, p, r, 1) = w_p(\mathscr{G}_0(n, r, 1)) = p \text{ for } p \le (r - 1)/r.$$
 (2)

Partial results for $w^*(n, p, r, 1)$ are found in [15, 33], which extend the result of Brace– Daykin[4]: $w^*(n, 1/2, r, 1) = w_{1/2}(\mathscr{G}_1(n, r, 1))$. Let us define some families of hypergraphs

as follows.

$$\begin{aligned} \mathbf{G}(n,r,t) &= \{\mathscr{G} \subset 2^{[n]} : \mathscr{G} \text{ is } r \text{-wise } t \text{-intersecting}\}, \\ \mathbf{G}_j(n,r,t) &= \{\mathscr{G} \subset 2^{[n]} : \mathscr{G} \subset \mathscr{G}' \text{ for some } \mathscr{G}' \cong \mathscr{G}_j(n,r,t)\}, \\ \mathbf{X}^i(n,r,t) &= \mathbf{G}(n,r,t) - \bigcup_{0 \leq j \leq i} \mathbf{G}_j(n,r,t). \end{aligned}$$

Now we state the main result in this paper, which will imply Theorem 2.

Theorem 4. Let $(r,t) \in A$ be fixed, where *A* is defined by (1). Then there exist positive constants γ, ε such that the following (i) and (ii) are true for all $n \ge r + t$ and *p* with $|p - \frac{1}{2}| < \varepsilon$.

(i) $w^*(n, p, r, t) = w_p(\mathscr{G}_1(n, r, t)).$ (ii) If $\mathscr{G} \in \mathbf{X}^1(n, r, t)$ then $w_p(\mathscr{G}) < (1 - \gamma)w^*(n, p, r, t).$

In [15] it is shown by construction that $w^*(n, p, 5, 1) > w_p(\mathscr{G}_1(n, 5, 1))$ for all $1/2 . Theorem 4 could be true for all <math>r \ge 5$ with only exception r = 5 and t = 1, and the same extension could be expected for Theorem 2. The upper bound for t set by (1) in Theorem 4 (and also Theorems 2 and 3) is best possible. In fact we have $w_p(\mathscr{G}_2(n, r, t)) > w_p(\mathscr{G}_1(n, r, t))$ for $t \ge 2^{r+1} - 3r$, see Lemma 2 in the next section. We emphasize that Frankl has already got a special case of (i) of Theorem 4 in [11] (Theorem 6.4), where he proved

$$w^*(n, 1/2, r, t) = w_{1/2}(\mathscr{G}_1(n, r, t))$$
 for $r \ge 5$ and $1 \le t \le 2^r - r - 1$. (3)

Our proof of (i) is based on his idea, but changing the weight from 1/2 to *p* is not straightforward. As we mentioned above, (3) is no longer true if we replace 1/2 with $1/2 + \varepsilon$ for the case r = 5 and t = 1. One of the main reasons comes from the fact

$$w^*(n, 1/2, 3, 2) < 0.773 (1/2)^2,$$

which Frankl used as a base case for his proof of (3), while in our case we only have

$$\lim_{n \to \infty} w^*(n, p, 3, 2) = p^2$$

for $p = 1/2 + \varepsilon$, see [12]. We will use results from [12, 29, 32] for our base case, which give w(n, p, r, t) for r = 4, 5, see Lemma 5. Theorem 4 implies the following immediately.

Theorem 5. Let $(r,t) \in A$ be fixed. Then there exists positive constant ε such that

$$w(n, p, r, t) = \max\{w_p(\mathscr{G}_0(n, r, t)), w_p(\mathscr{G}_1(n, r, t))\}$$

holds for all $n \ge r+t$ and p with $|p-\frac{1}{2}| < \varepsilon$. Moreover $\mathscr{G}_0(n,r,t)$ and $\mathscr{G}_1(n,r,t)$ are the only optimal configurations (up to isomorphism).

Comparing $w_p(\mathscr{G}_1)$ and $w_p(\mathscr{G}_2)$ (see Lemma 1 in the next section), we find that if $(r,t) \in A$ then max $\{w_p(\mathscr{G}_1), w_p(\mathscr{G}_2)\}$ is attained by

$$\begin{cases} \mathscr{G}_0(n,r,t) & \text{if } 1 \le t \le 2^r - r - 2, \text{ or } t = 2^r - r - 1 \text{ and } p \le 1/2, \\ \mathscr{G}_1(n,r,t) & \text{if } t \ge 2^r - r, \text{ or } t = 2^r - r - 1 \text{ and } p > 1/2. \end{cases}$$

In Theorems 1 and 5, we focused on the case when the range for k/n or p is around 1/2. We can extend this range for the case $t \le 2^r - r - 1$ as follows.

Theorem 6. Let $(r,t) \in A$ and $t \leq 2^r - r - 1$. Then for all $\varepsilon > 0$ there exist positive constants γ, n_0 such that $m^*(n,k,r,t) < (1-\gamma) \binom{n-t}{k-t}$ holds for all $n > n_0$ and k with $\frac{k}{n} < \frac{1}{2} - \varepsilon$. In particular, we have $m(n,k,r,t) = \binom{n-t}{k-t}$, and $\mathscr{F}_0(n,k,r,t)$ is the only optimal family (up to isomorphism).

Theorem 7. Let $(r,t) \in A$ and $t \leq 2^r - r - 1$. Then for all $\varepsilon > 0$ there exists positive constant γ such that $w^*(n, p, r, t) < (1 - \gamma)p^t$ holds for all $n \geq t$ and p with $p < \frac{1}{2} - \varepsilon$. In particular, we have $w(n, p, r, t) = p^t$, and $\mathscr{G}_0(n, r, t)$ is the only optimal family (up to isomorphism).

As the reader might expect, $m(n,k,r,t)/\binom{n}{k}$ and w(n,p,r,t) are closely related when $p \approx k/n$. This was observed by Dinur and Safra in [7] for the case r = 2. See also [29] for more general setting. We will fully use this relation to prove our results.

In Section 2, we prepare some tools for the proofs. We prove Theorem 4 in Section 3. In the last section, we prove the other theorems in the following implication.

Theorem 3 \Leftarrow Theorem 2 \Leftarrow Theorem 4 \Rightarrow Theorem 6 \Rightarrow Theorem 7

2. Tools

2.1. Some inequalities. To find w(n, p, r, t) we need to know $\max_i w_p(\mathscr{G}_i(n, r, t))$. So let us start with comparing $w_p(\mathscr{G}_0(n, r, t)) = p^t$ and $w_p(\mathscr{G}_1(n, r, t)) = (t+r)p^{t+r-1}q + p^{t+r}$. Then we have $w_p(\mathscr{G}_0) \ge w_p(\mathscr{G}_1)$ iff $t \le (p^{1-r} - p)/q - r =: f(p)$. We note that $f(1/2) = 2^r - r - 1$, and f(p) is decreasing iff $1 - qr - p^r < 0$ (and this is so for p = 1/2 and $r \ge 2$). Thus we have the following.

Lemma 1. For every $r \ge 2$ there exists $\varepsilon > 0$ such that $w_p(\mathscr{G}_0(n,r,t)) \ge w_p(\mathscr{G}_1(n,r,t))$ holds for $p \in (1/2 - \varepsilon, 1/2]$ iff $1 \le t \le 2^r - r - 1$, and $w_p(\mathscr{G}_0(n,r,t)) > w_p(\mathscr{G}_1(n,r,t))$ holds for $p \in (1/2, 1/2 + \varepsilon)$ iff $1 \le t \le 2^r - r - 2$.

Lemma 2. For every $r \ge 3$ there exists $\varepsilon > 0$ such that $w_p(\mathscr{G}_1(n,r,t)) > w_p(\mathscr{G}_2(n,r,t))$ holds for all p with $|p-1/2| < \varepsilon$ iff $1 \le t \le 2^{r+1} - 3r - 1$.

Proof. Since $w_p(\mathscr{G})$ is a continuous function of p (for fixed \mathscr{G}), it is sufficient to show the case p = 1/2. So set p = 1/2 and let $\mathscr{G}_1 = \mathscr{G}_1(n, r, t)$ and $\mathscr{G}_2 = \mathscr{G}_2(n, r, t)$. First we note that $w_p(\mathscr{G}_1) > w_p(\mathscr{G}_2)$ iff $w_p(\mathscr{G}_1 \setminus \mathscr{G}_2) > w_p(\mathscr{G}_2 \setminus \mathscr{G}_1)$, and

$$\begin{array}{lll} \mathscr{G}_1 \setminus \mathscr{G}_2 &=& \{G \subset [n] : [t+r] \subset G, \, |G \cap [t+r+1,t+2r]| < r-2 \} \\ & \cup \{G \subset [n] : |G \cap [t+r]| = t+r-1, \, |G \cap [t+r+1,t+2r]| < r-1 \}, \\ \mathscr{G}_2 \setminus \mathscr{G}_1 &=& \{G \subset [n] : |G \cap [t+r]| = t+r-2, \, [t+r+1,t+2r] \subset G \}. \end{array}$$

Then we have

$$w_p(\mathscr{G}_1 \setminus \mathscr{G}_2) = p^{t+2r} \left(\sum_{j=0}^{r-3} \binom{r}{j} + (t+r) \sum_{j=0}^{r-2} \binom{r}{j} \right) \\ = p^{t+2r} \left((t+r+1)(2^r-1-r) - \binom{r}{2} \right), \\ w_p(\mathscr{G}_2 \setminus \mathscr{G}_1) = p^{t+2r} \binom{t+r}{2}.$$

Thus we have $w_p(\mathscr{G}_1) = w_p(\mathscr{G}_2)$ iff $f(t) := (t+r+1)(2^r-1-r) - \binom{r}{2} - \binom{t+r}{2} = 0$, and this quadratic equation of t has only one positive root. We have $f(2^{r+1}-3r-1) = 2^r - r^2/2 - r^2/2$ r/2 - 1 > 0 and $f(2^{r+1} - 3r) = -(r^2 - r + 2)/2 < 0$, which completes the proof. Similarly one can prove the following.

Lemma 3. Let j = 3, 4. For every $r \ge j+2$ there exists $\varepsilon > 0$ such that $w_p(\mathscr{G}_{j-1}(n, r, t)) > 0$ $w_p(\mathscr{G}_j(n,r,t))$ holds for all p with $|p-1/2| < \varepsilon$ iff $1 \le t \le j(2^r - 2r + 1) + r - 3$.

Throughout this paper, let $\alpha_{r,p} \in (p,1)$ be the root of the equation $X = p + qX^r$. We write α_r omitting p for the case p = 1/2. For later use, we record the numerical data: $\alpha_3 =$ $(\sqrt{5}-1)/2 \approx 0.618, \alpha_4 \approx 0.543689, \alpha_5 \approx 0.51879, \alpha_6 \approx 0.50866, \alpha_7 \approx 0.504138$. We list inequalities about w(n, p, r, t) below, which will be used to prove Theorem 4. Lemma 6 follows from Lemma 4 and Lemma 5.

Lemma 4 ([33]). Let p, r, t_0, c be fixed constants. Suppose that $w(n, p, r, t_0) = c$ holds for all $n \ge t_0$. Then we have $w(n, p, r, t) \le c \alpha_{r, p}^{t-t_0}$ for all $t \ge t_0$ and $n \ge t$.

Lemma 5 ([12, 29, 32]). Let r = 3 and $1 \le t \le 2$, or r = 4 and $1 \le t \le 7$, or r = 5 and $1 \le t \le 18$. Then there exists $\varepsilon > 0$ such that $w(n, p, r, t) = p^t$ holds for all $n \ge t$ and p with $|p-\frac{1}{2}| < \varepsilon$.

Lemma 6. Let $s \ge 2$ and $t \ge 7$. Then there exists $\varepsilon > 0$ such that

 $w(n, p, 3, s) \leq p^2 \alpha_{3, p}^{s-2}$ and $w(n, p, 4, t) \leq p^7 \alpha_{4, p}^{t-7}$

hold for all $n \ge s$ (resp. $n \ge t$) and p with $|p - \frac{1}{2}| < \varepsilon$.

We will use Lemma 8 in our main reduction step to prove Theorem 4, see Claim 9. To prove Lemma 8 we need the following lemma, which is essentially proved in [11], cf. Proposition 2.8 and 7.7 of [11].

Lemma 7. We have (i) $(2\alpha_r)^{2^{r+1}} < 8$ for r > 8, and (ii) $1/(2\alpha_r) < 1 - (1/2)^r$.

Proof. Recall that α_r is the unique root of f(x) = 0 in (1/2, 1), where $f(x) = x^r - 2x + 1$. We note that f(1/2) > 0 and f(1) = 0.

(i) is equivalent to $2\alpha_r < 8^b$, where $b = 1/2^{r+1}$. It is sufficient to show $f(8^b/2) < 0$. We use $br = r/2^{r+1} \le 8/2^9 = 1/64$, $2 \times 8^{1/64} < 2.07 < \log 8$, and $8^b = e^{b \log 8} > 1 + b \log 8$. Then we have $(8^b/2)^r = 8^{br}/2^r \le 8^{1/64}/2^r < (\log 8)/2^{r+1} = b \log 8 < 8^b - 1$, as desired.

(ii) is equivalent to $\alpha_r > \beta := \frac{2^{r-1}}{(2^r-1)}$. It is sufficient to show $f(\beta) > 0$, and this follows from $\beta^r = \left(\frac{1}{2}\left(\frac{2^r}{2^r-1}\right)\right)^r = \frac{1}{2^r}\left(\frac{2^r}{2^r-1}\right)^r > \frac{1}{2^r}\left(\frac{2^r}{2^r-1}\right) = \frac{1}{2^r-1} = 2\beta - 1.$

Lemma 8. Let $r \ge 9$, $t_r = 2^{r+1} - 3r - 1$ and p = 1/2. Then we have

$$w_p(\mathscr{G}_1(n, r-1, t_{r-1}))\alpha_{r-1}^{(t+3)-t_{r-1}} < w_p(\mathscr{G}_1(n, r, t))$$
(4)

for $t_{r-1} \le t \le t_r$, where $w_p(\mathscr{G}_1(n, a, b)) = (a + b + 1)p^{a+b}$.

Proof. Set $\alpha = \alpha_{r-1}$, $t = t_r - i$ and we prove (4) by induction on i, $0 \le i \le t_r - t_{r-1} = 2^r - 3$. First we show the case i = 0, i.e., $t = t_r$. In this case (4) is

$$(2^{r}-2r+2)p^{2^{r}-2r+1}\alpha^{2^{r}} < (2^{r+1}-2r)p^{2^{r+1}-2r-1},$$

or equivalently,

$$\alpha^{2^r} < \frac{2^{r+1}-2r}{2^r-2r+2} p^{2^r-2}.$$

The RHS is more than $2p^{2^r-2} = 8p^{2^r}$, and so it is sufficient to show $\alpha^{2^r} < 8p^{2^r}$, i.e., $(2\alpha_{r-1})^{2^r} < 8$, which is true for $r \ge 9$ by Lemma 7 (i).

To show the induction step, we assume that (4) is true for *i*, that is,

$$R(2\alpha)^{2^{r}-i} < 2^{r+1} - 2r - i,$$

where $R = (2^r - 2r + 2)/4$. Then, for the case i + 1, we have

$$R(2\alpha)^{2^{r}-(i+1)} = R(2\alpha)^{2^{r}-i}/(2\alpha) < (2^{r+1}-2r-i)/(2\alpha).$$

We have to show that the RHS is less than $2^{r+1} - 2r - (i+1)$, that is,

$$\frac{1}{2\alpha} < 1 - \frac{1}{2^{r+1} - 2r - i}$$

By Lemma 7 (ii) and $i \le 2^r - 3$ we have

$$\frac{1}{2\alpha_{r-1}} < 1 - \frac{1}{2^{r-1}} < 1 - \frac{1}{2^{r+1} - 2r - (2^r - 3)} \le 1 - \frac{1}{2^{r+1} - 2r - i}$$

as desired.

We use Lemmas 9 and 10 to prove Theorems 4 and 7 respectively.

Lemma 9. $w^*(n, p, r, t) \le w^*(n, p, r-1, t+1)$.

Proof. If $\mathscr{G} \in \mathbf{X}^0(n, r, t)$ then $\mathscr{G} \in \mathbf{X}^0(n, r-1, t+1)$. In fact, if \mathscr{G} is not (r-1)-wise (t+1)intersecting, then we can find $G_1, \ldots, G_{r-1} \in \mathscr{G}$ such that $|G_1 \cap \cdots \cap G_{r-1}| = t$. But \mathscr{G} is *r*-wise *t*-intersecting and so every $G \in \mathscr{G}$ must contain $G_1 \cap \cdots \cap G_{r-1}$, which contradicts
the fact that \mathscr{G} is non-trivial.

Lemma 10. $w^*(n+1, p, r, t) \ge w^*(n, p, r, t)$.

Proof. Choose $\mathscr{G} \in \mathbf{X}^0(n,r,t)$ with $w_p(\mathscr{G}) = w^*(n,p,r,t)$. Then we have $\mathscr{G}' := \mathscr{G} \cup \{G \cup \{n+1\} : G \in \mathscr{G}\} \in \mathbf{X}^0(n+1,r,t)$ and $w_p(\mathscr{G}' : [n+1]) = w_p(\mathscr{G} : [n])(q+p) = w^*(n,p,r,t)$, which means $w^*(n+1,p,r,t) \ge w^*(n,p,r,t)$.

 \square

2.2. Shifting and shadow. For integers $1 \le i < j \le n$ and a family $\mathscr{G} \subset 2^{[n]}$, we define the (i, j)-shift σ_{ij} as follows:

$$\sigma_{ij}(\mathscr{G}) = \{\sigma_{ij}(G) : G \in \mathscr{G}\},\$$

where

$$\sigma_{ij}(G) = \begin{cases} (G - \{j\}) \cup \{i\} & \text{if } i \notin G, \ j \in G, \ (G - \{j\}) \cup \{i\} \notin \mathscr{G}, \\ G & \text{otherwise.} \end{cases}$$

A family $\mathscr{G} \subset 2^{[n]}$ is called *shifted* if $\sigma_{ij}(\mathscr{G}) = \mathscr{G}$ for all $1 \leq i < j \leq n$, and \mathscr{G} is called *tame* if it is shifted and $\bigcap \mathscr{G} = \emptyset$. If \mathscr{G} is *r*-wise *t*-intersecting, then so is $\sigma_{ij}(\mathscr{G})$. Note also that $w_p(\mathscr{G}) = w_p(\sigma_{ij}(\mathscr{G}))$, namely, shifting operations keep the *p*-weight.

Lemma 11. Let $\mathscr{G} \subset 2^{[n]}$ be a non-trivial *r*-wise *t*-intersecting family with maximal *p*-weight. Then we can find a tame *r*-wise *t*-intersecting family $\mathscr{G}' \subset 2^{[n]}$ with $w_p(\mathscr{G}') = w_p(\mathscr{G})$.

Proof. If $\mathscr{G} \in \mathbf{X}^0(n, r, t)$ then $\mathscr{G} \in \mathbf{X}^0(n, r-1, t+1)$ (see Lemma 9). We apply all possible shifting operations to \mathscr{G} to get a shifted family $\mathscr{G}' \in \mathbf{X}^0(n, r-1, t+1)$ with the same *p*-weight.

We have to show that $\bigcap \mathscr{G}' = \emptyset$. Otherwise we may assume that $1 \in \bigcap \mathscr{G}'$ and $H = [2,n] \notin \mathscr{G}'$. Since \mathscr{G}' is *p*-weight maximal we can find $G_1, \ldots, G_{r-1} \in \mathscr{G}'$ such that $|G_1 \cap \cdots \cap G_{r-1} \cap H| < t$. Then we have $|G_1 \cap \cdots \cap G_{r-1}| < t+1$, which is a contradiction. \Box

To prove Theorems 2, 3 and 6, we will use some basic facts about shadow. For a family $\mathscr{G} \subset 2^{[n]}$ and a positive integer $\ell < n$, let us define the ℓ -th lower shadow of \mathscr{G} , denoted by $\Delta_{\ell}(\mathscr{G})$, as follows:

$$\Delta_{\ell}(\mathscr{G}) = \{ F \in {[n] \choose \ell} : F \subset \exists G \in \mathscr{G} \}.$$

Similarly, the ℓ -th upper shadow of \mathscr{G} is defined by $\nabla_{\ell}(\mathscr{G}) = \{H \in {[n] \choose \ell} : H \supset \exists G \in \mathscr{G}\}.$ We define the complement family of $\mathscr{G} \subset 2^{[n]}$ by $\mathscr{G}^c := \{[n] - G : G \in \mathscr{G}\}.$ We note that $\nabla_{\ell}(\mathscr{G}) = (\Delta_{n-\ell}(\mathscr{G}^c))^c$ and so $|\nabla_{\ell}(\mathscr{G})| = |\Delta_{n-\ell}(\mathscr{G}^c)|.$

Lemma 12. Let 0 < a < b and $\emptyset \neq \mathscr{G}_a \subset {[n] \choose a}$. Then we have

$$\frac{|\nabla_b(\mathscr{G}_a)|}{|\mathscr{G}_a|} \geq \frac{\binom{n}{b}}{\binom{n}{a}}.$$

Moreover if a + b < n then we have $|\nabla_b(\mathscr{G}_a)| > |\mathscr{G}_a|$.

Proof. Choose a real $x \le n$ so that $|\mathscr{G}_a| = \binom{x}{n-a}$. By the Kruskal–Katona Theorem[24, 23], we have $|\nabla_b(\mathscr{G}_a)| = |\Delta_{n-b}(\mathscr{G}_a^c)| \ge \binom{x}{n-b}$, and $|\nabla_b(\mathscr{G}_a)|/|\mathscr{G}_a| \ge \binom{x}{n-b}/\binom{x}{n-a} \ge \binom{n}{b}/\binom{n}{a}$, where we used $x \le n$ in the last inequality. If a + b < n then $\binom{n}{b}/\binom{n}{a} > 1$ and the result follows.

Lemma 13. Let $\mathscr{A}, \mathscr{B} \subset 2^{[n]}$ be Sperner families, and let c > 1 be a real. Suppose that

$$\mathscr{A} \cap \Delta(\mathscr{B}) = \emptyset, \tag{5}$$

where $\Delta(\mathscr{B}) = \{C : C \subset \exists B \in \mathscr{B}\}$. Then we have

$$c|\mathscr{A}|+|\mathscr{B}|\leq c\binom{n}{\lceil n/2\rceil}+\binom{n}{\lceil n/2\rceil-1},$$

with equality holding iff $\mathscr{A} = {\binom{[n]}{\lceil n/2 \rceil}}$ and $\mathscr{B} = {\binom{[n]}{\lceil n/2 \rceil-1}}$.

Proof. First suppose that *n* is odd and let n = 2m + 1. Then by the Sperner theorem[28], \mathscr{A} and \mathscr{B} have size at most $\binom{n}{m+1} = \binom{n}{m}$, which gives the desired upper bound. Possible optimal configurations for \mathscr{A}, \mathscr{B} are $\binom{[n]}{m+1}$ and $\binom{[n]}{m}$. Only the case $\mathscr{A} = \binom{[n]}{m+1}$ and $\mathscr{B} = \binom{[n]}{m}$ satisfies (5).

Next suppose that *n* is even and let n = 2m. Set $a_i = |\mathscr{A} \cap {\binom{[n]}{i}}|$, $b_i = |\mathscr{B} \cap {\binom{[n]}{i}}|$ and $x_i = ca_i + b_i$. Using the Yamamoto[35] (or LYM) inequality, we have

$$\sum_{i} \frac{x_i}{\binom{n}{i}} = c \sum_{i} \frac{a_i}{\binom{n}{i}} + \sum_{i} \frac{b_i}{\binom{n}{i}} \le c+1,$$

and

$$\sum_{i \neq m} \frac{x_i}{\binom{n}{i}} \le c + 1 - \frac{x_m}{\binom{n}{m}}.$$
(6)

By (5) we have $a_m + b_m \leq \binom{n}{m}$, and

$$x_m = ca_m + b_m \le c(a_m + b_m) \le c\binom{n}{m}.$$
(7)

Consequently we have

$$\begin{split} \sum_{i} x_{i} &= x_{m} + \sum_{i \neq m} x_{i} \leq x_{m} + \binom{n}{m-1} \sum_{i \neq m} \frac{x_{i}}{\binom{n}{i}} \\ &\leq x_{m} + \binom{n}{m-1} \left(c + 1 - \frac{x_{m}}{\binom{n}{m}} \right) = (c+1)\binom{n}{m-1} + \frac{x_{m}}{m+1} \\ &\leq (c+1)\binom{n}{m-1} + \frac{c}{m+1}\binom{n}{m} = c\binom{n}{m} + \binom{n}{m-1}, \end{split}$$

which is the desired inequality. For the equality, we need $ca_m + b_m = c(a_m + b_m) = c\binom{n}{m}$ in (7), which implies $b_m = 0$ and $a_m = \binom{n}{m}$. Since $\sum_i a_i / \binom{n}{i} \le 1$, we have $a_i = 0$ if $i \ne m$, i.e., $\mathscr{A} = \binom{[n]}{m}$. By (5) we have $b_i = 0$ if i > m, and $c|\mathscr{A}| + |\mathscr{B}| = c\binom{n}{m} + \binom{n}{m-1}$ implies $|\mathscr{B}| = \sum_{i < m} b_i = \binom{n}{m-1}$. We also need equality in (6), which gives $\sum_{i < m} b_i / \binom{n}{i} = 1$. Consequently we have $\binom{n}{m-1} = \sum_{i < m} b_i \le \binom{n}{m-1} \sum_{i < m} b_i / \binom{n}{i} = \binom{n}{m-1}$, namely $\mathscr{B} = \binom{[n]}{m-1}$.

3. PROOF OF THEOREM 4

First we show (i). Let $(r,t) \in A$ and let $\mathscr{G} \subset 2^{[n]}$ be a non-trivial *r*-wise *t*-intersecting family with maximal *p*-weight. By Lemma 11 we may assume that \mathscr{G} is tame, namely, it

is shifted and $\bigcap \mathscr{G} = \emptyset$. If $\mathscr{G} \in \mathbf{G}_1(n, r, t)$ then there is nothing to prove. Thus we assume that $\mathscr{G} \in \mathbf{X}^1(n, r, t)$ and we will show that there exist $\gamma, \varepsilon > 0$ such that

$$w_p(\mathscr{G}) < (1 - \gamma)w_p(\mathscr{G}_1(n, r, t))$$
(8)

holds for all $n \ge r+t$ and p with $|p-1/2| < \varepsilon$. If $\mathscr{G} \in \mathbf{X}^1 - \mathbf{X}^4 = \mathbf{G}_2 \cup \mathbf{G}_3 \cup \mathbf{G}_4$ then (8) follows from Lemmas 2 and 3. Thus we may assume that $\mathscr{G} \in \mathbf{X}^4(n, r, t)$. Let $\tilde{w}^*(n, p, r, t)$ be the maximal p-weight of tame families in $\mathbf{X}^4(n, r, t)$. Then it suffices to show

$$w_p(\mathscr{G}) = \tilde{w}^*(n, p, r, t) < (1 - \gamma)w_p(\mathscr{G}_1(n, r, t)).$$
(9)

Recall that $w_p(\mathscr{G}_1(n,r,t)) = (t+r)p^{t+r-1}q + p^{t+r}$ and let $\omega := w_{1/2}(\mathscr{G}_1(n,r,t)) = (t+r+1)(1/2)^{t+r}$. The following simple observation is useful.

Claim 1. Suppose that $w_p(\mathscr{G}) \leq f(p)$ holds for some continuous function f(p), and suppose that $f(1/2) < \omega$. Then there exist $\gamma, \varepsilon > 0$ such that $w_p(\mathscr{G}) < (1 - \gamma)w_p(\mathscr{G}_1(n, r, t))$ for all $|p - 1/2| < \varepsilon$.

Let $t^{(i)} = \max\{j : \mathcal{G} \text{ is } i\text{-wise } j\text{-intersecting}\}$, and let $s = t^{(r-1)}$. Since \mathcal{G} is *p*-weight maximal we have $t^{(r)} = t$. Due to $\mathcal{G} \in \mathbf{X}^0(n, r, t)$ we have t < s and

$$w_p(\mathscr{G}) \le w^*(n, p, r-1, s) \le w(n, p, r-1, s).$$
 (10)

After [11] let $h := \min\{i : |G \cap [t+i]| \ge t \text{ for all } G \in \mathscr{G}\}$. This is the maximum size of "holes" in [t+h].

Claim 2. $1 \le h \le s - t$.

Proof. Since \mathscr{G} is non-trivial, we have $h \ge 1$. By the definition of *s* and the shiftedness of \mathscr{G} , we have $G_1, \ldots, G_{r-1} \in \mathscr{G}$ such that $G_1 \cap \cdots \cap G_{r-1} = [s]$. Then it follows from $t^{(r)} = t$ that $|[s] \cap G| \ge t$ for all $G \in \mathscr{G}$, namely, $t + h \le s$.

Let b = t + h - 1 and let $T_i = [b + 1 - i, b]$ be the right-most *i*-set in [b]. For $A \subset [b]$ let

$$\mathscr{G}(A) = \{G \cap [b+1,n] : G \in \mathscr{G}, [b] \setminus G = A\}$$

Since \mathscr{G} is shifted, we have $\mathscr{G}(A) \subset \mathscr{G}(T_i)$ for all $A \in {[b] \choose i}$, and thus we have

$$w_p(\mathscr{G}) \le \sum_{i=0}^h {b \choose i} p^{b-i} q^i w_p(\mathscr{G}(T_i) : [b+1,n]).$$

$$(11)$$

Claim 3. For $0 \le i < h$ and $2 \le j < r$, $\mathscr{G}(T_i)$ is *j*-wise (ij + (r-1-j)h + 1)-intersecting.

Proof. Suppose that $\mathscr{G}(T_i)$ is not *j*-wise *v*-intersecting, where v = ij + (r-1-j)h + 1. Then we can find $G_1, \ldots, G_j \in \mathscr{G}(T_i)$ such that $|G_1 \cap \cdots \cap G_j| < v$. Since \mathscr{G} is shifted, we may assume that $G_1 \cap \cdots \cap G_j \subset [b+1, b+v-1]$. By shifting $(G_\ell \cup [b]) - T_i \in \mathscr{G}$, we get $G'_\ell := (G_\ell \cup [b]) - [b+1+(\ell-1)i, b+\ell i] \in \mathscr{G}$ for $1 \le \ell \le j$.

By the definition of *h* we have some $H \in \mathscr{G}$ such that $|H \cap [b]| < t$ and due to the shiftedness of \mathscr{G} we may assume that H = [n] - [t, b]. By shifting *H*, we get $G'_{\ell} := [n] - [b+ij+1+(\ell-1-j)h, b+ij+(\ell-j)h] \in \mathscr{G}$ for $j < \ell < r$. Then we have $G'_1 \cap \cdots \cap G'_{r-1} \cap H = [t-1]$, which contradicts the *r*-wise *t*-intersecting property of \mathscr{G} . \Box

Claim 4. $\mathscr{G}(T_h)$ is *r*-wise ((r-1)h+1)-intersecting, and if $\mathscr{G} \not\subset \mathscr{G}_h(n,r,t)$ then $\mathscr{G}(T_h)$ is (r-1)-wise ((r-1)h+2)-intersecting.

Proof. First suppose that $\mathscr{G}(T_h)$ is not *r*-wise *v*-intersecting, where v = (r-1)h+1. Then we can find $G_1, \ldots, G_r \in \mathscr{G}(T_h)$ such that $G_1 \cap \cdots \cap G_r \subset [b+1, b+v-1]$. By shifting $(G_\ell \cup [b]) - T_h \in \mathscr{G}$ we get $G'_\ell := (G_\ell \cup [b]) - [t + (\ell-1)h, t + \ell h - 1] \in \mathscr{G}$ for $1 \le \ell \le r$. Then we have $|G'_1 \cap \cdots \cap G'_r| < t$, a contradiction.

Next suppose that $\mathscr{G}(T_h)$ is not (r-1)-wise *w*-intersecting, where w = (r-1)h+2. Then we can find $G_1, \ldots, G_{r-1} \in \mathscr{G}(T_h)$ such that $G_1 \cap \cdots \cap G_{r-1} \subset [b+1, b+w-1]$. By shifting $(G_\ell \cup [b]) - T_h \in \mathscr{G}$ we get $G'_\ell := (G_\ell \cup [b]) - [t + (\ell-1)h, t + \ell h - 1] \in \mathscr{G}$ for $1 \leq \ell < r$. Since $\mathscr{G} \not\subset \mathscr{G}_h(n, r, t)$ we have $G'_r := [n] - [t + (r-1)h, t + rh] \in \mathscr{G}$. Then we have $|G'_1 \cap \cdots \cap G'_r| < t$.

Now we explain the outline of our proof for (9) (cf. Claims 5–9). If *s* is large then (9) follows from (10). Thus we may assume *s* is small, actually we will find that we may assume $s \le t + 4$. Then we have $1 \le h \le 4$ by Claim 2 and we can apply Claim 4 since $\mathscr{G} \in \mathbf{X}^4(n, r, t)$. Using Claims 3 and 4 we define an upper bound function $g^{(i)}(p)$ for $w_p(\mathscr{G}(T_i) : [b+1,n])$ by

$$g^{(i)}(p) = \begin{cases} \min\{w(n', p, r-1, t'), w(n', p, r-2, t'')\} & \text{if } 0 \le i < h \\ \min\{w(n', p, r, (r-1)h+1), w(n', p, r-1, (r-1)h+2)\} & \text{if } i = h, \end{cases}$$

where n' = n - b, t' = (r - 1)i + 1 and t'' = (r - 2)i + h + 1. We will find continuous functions $f^{(i)}$ such that $g^{(i)}(p) \le f^{(i)}(p)$ and $\sum_{i=0}^{h} {b \choose i} p^{b-i} q^{i} f^{(i)}(1/2) < \omega$. Then this together with (11) and Claim 1 will give (9). We will apply Claim 1 several times with different $f^{(i)}$, and our $\varepsilon > 0$ will be chosen sufficiently small to get through all the cases. Let $t_r := 2^{r+1} - 3r - 1$.

Claim 5. *Let* r = 5 *and* $5 \le t \le t_5 = 48$ *. Then we have (9).*

Proof. We show that (9) holds if $s \ge t + 5$, and then we proceed the casewise analysis for the cases $s \le t + 4$, i.e., $1 \le h \le 4$.

First suppose that $s = t^{(4)} \le 7$. Since s > t we have $t \le 6$. By (10) and Lemma 5 it follows $w_p(\mathscr{G}) \le w(n, p, 4, s) = p^s$. To apply Claim 1 as $f(p) = p^s$, we note that $(1/2)^s < \omega$ holds iff $2^{t-s+5} < t+6$. This is true if $t \le 6$ and $s \ge t+3$, and we are done in this case. Thus for the case $t \le 6$ we may assume that $s \le t+2$, i.e., $1 \le h \le 2$ by Claim 2.

Next suppose that $s \ge 8$. By (10) and Lemma 6 we have $w_p(\mathscr{G}) \le w(n, p, 4, s) \le p^7 \alpha_{4,p}^{s-7}$. If $s \ge t+5$ then the RHS is less than ω at p = 1/2 for $1 \le t \le 50$. Thus we may assume that $s \le t+4$ and so $1 \le h \le 4$ by Claim 2.

Case 5-1. h = 1. We find that $\mathscr{G}(T_0)$ is (r-2)-wise 2-intersecting by Claim 3, and $\mathscr{G}(T_1)$ is (r-1)-wise (r+1)-intersecting by Claim 4. Then $w_p(\mathscr{G}(T_0) : [b+1,n]) \le p^2$ and $w_p(\mathscr{G}(T_1) : [b+1,n]) \le p^{r+1}$ follow from Lemma 5. Thus using (11) we have

$$w_p(\mathscr{G}) \le p^t \cdot p^2 + t p^{t-1} q \cdot p^{r+1}, \tag{12}$$

and the RHS is less than ω at p = 1/2 for $t > 2^{r-1} - 2r - 2$. Then Claim 1 gives (9).

Case 5-2. h = 2. Since $\mathscr{G}(T_0)$ is 3-wise 3-intersecting, $\mathscr{G}(T_1)$ is 4-wise 5-intersecting, and $\mathscr{G}(T_2)$ is 4-wise 10-intersecting, we have

$$w_p(\mathscr{G}) \le p^{t+1} \cdot p^2 \alpha_{3,p} + (t+1)p^t q \cdot p^5 + {t+1 \choose 2} p^{t-1} q^2 \cdot p^7 \alpha_{4,p}^3,$$

and the RHS is less than ω at p = 1/2 for $1 \le t \le 54$.

Case 5-3. h = 3. Since $\mathscr{G}(T_0)$ is 3-wise 4-intersecting, $\mathscr{G}(T_1)$ is 3-wise 7-intersecting, $\mathscr{G}(T_2)$ is 4-wise 9-intersecting, and $\mathscr{G}(T_3)$ is 5-wise 13-intersecting, we have

$$w_p(\mathscr{G}) \le p^{t+2} \cdot p^2 \alpha_{3,p}^2 + (t+2)p^{t+1}q \cdot p^2 \alpha_{3,p}^5 + {t+2 \choose 2} p^t q^2 \cdot p^7 \alpha_{4,p}^2 + {t+2 \choose 3} p^{t-1}q^3 \cdot p^{13},$$

and the RHS is less than ω at p = 1/2 for $1 \le t \le 49$.

Case 5-4. h = 4. Since $\mathscr{G}(T_0)$ is 3-wise 5-intersecting, $\mathscr{G}(T_1)$ is 3-wise 8-intersecting, $\mathscr{G}(T_2)$ is 4-wise 9-intersecting, $\mathscr{G}(T_3)$ is 4-wise 13-intersecting, and $\mathscr{G}(T_4)$ is 5-wise 17intersecting, we have

$$w_{p}(\mathscr{G}) \leq p^{t+3} \cdot p^{2} \alpha_{3,p}^{3} + (t+3) p^{t+2} q \cdot p^{2} \alpha_{3,p}^{6} + {\binom{t+3}{2}} p^{t+1} q^{2} \cdot p^{7} \alpha_{4,p}^{2} + {\binom{t+3}{3}} p^{t} q^{3} \cdot p^{7} \alpha_{4,p}^{6} + {\binom{t+3}{4}} p^{t-1} q^{4} \cdot p^{17},$$

and the RHS is less than ω at p = 1/2 for $1 \le t \le 57$.

We note that similarly to Lemma 9 we have

$$\tilde{w}^*(n, p, r, t) \le \tilde{w}^*(n, p, r-1, t+1).$$
 (13)

Claim 6. Let r = 6 and $4 \le t \le t_6 = 109$. Then we have (9).

Proof. If $5 \le t + 1 \le t_5 = 48$ then using (13) with Claim 5 we have

$$\tilde{w}^*(n, p, 6, t) \leq \tilde{w}^*(n, p, 5, t+1) < (1-\gamma)w_p(\mathscr{G}_1(n, 5, t+1)) = (1-\gamma)w_p(\mathscr{G}_1(n, 6, t)).$$

Thus we may assume that $s \ge t + 1 \ge 49$. By (10) and Lemma 4 with Claim 5 we have

$$w_p(\mathscr{G}) \le w(n, p, 5, s) \le w_p(\mathscr{G}_1(n, 5, 48))\alpha_{5, p}^{s-48}$$

If s > t + 4 then the RHS is less than ω at p = 1/2 for t < 124. Thus we may assume that $s \le t + 3$ and $1 \le h \le 3$.

Case 6-1. h = 1. Same as Case 5-1. (We need (12) for $t \ge t_5$. This is true in general for $r \ge 6$. In fact we have (12) for $t > 2^{r-1} - 2r - 2$ and $t_{r-1} > 2^{r-1} - 2r - 2$.)

Case 6-2. h = 2. Since $\mathscr{G}(T_0)$ is (r-2)-wise 3-intersecting, $\mathscr{G}(T_1)$ is (r-2)-wise (r+1)-intersecting, and $\mathscr{G}(T_2)$ is (r-1)-wise (2r)-intersecting, we have

$$w_p(\mathscr{G}) \le p^{t+1} \cdot p^3 + (t+1)p^t q \cdot p^{r+1} + {\binom{t+1}{2}}p^{t-1}q^2 \cdot p^{2r}, \tag{14}$$

and the RHS is less than ω at p = 1/2 for $t_{r-1} \le t \le 2^{r+1}$.

Case 6-3. h = 3. Since $\mathscr{G}(T_0)$ is (r-2)-wise 4-intersecting, $\mathscr{G}(T_1)$ is (r-2)-wise (r+2)-intersecting, $\mathscr{G}(T_2)$ is (r-2)-wise (2r)-intersecting, and $\mathscr{G}(T_3)$ is (r-1)-wise (3r-1)-intersecting, we have

$$w_p(\mathscr{G}) \le p^{t+2} \cdot p^4 + (t+2)p^{t+1}q \cdot p^7 \alpha_{4,p} + {\binom{t+2}{2}}p^t q^2 \cdot p^7 \alpha_{4,p}^5 + {\binom{t+2}{3}}p^{t-1}q^3 \cdot p^{17}, \quad (15)$$

and the RHS is less than ω at $p = 1/2$ for $t_{r-1} \le t \le 2^{r+1}$.

and the RHS is less than
$$\omega$$
 at $p = 1/2$ for $t_{r-1} \le t \le 2^{r+1}$.

Claim 7. Let r = 7 and $2 \le t \le t_7 = 234$. Then we have (9).

Proof. The case t = 2 was proved in [33]. Using (13) with Claim 6 we have (9) for $4 \le t+1 \le 109$. Thus we may assume that $s \ge t+1 \ge 110$, and we have

$$w_p(\mathscr{G}) \le w(n, p, 6, s) \le w_p(\mathscr{G}_1(n, 6, 109))\alpha_{6, p}^{s-109}.$$

If $s \ge t + 4$ then the RHS is less than ω at p = 1/2 for $t \le 278$. Thus we may assume that $s \le t + 3$ and $1 \le h \le 3$. Then we repeat the casewise check as in Claim 6. In this case we can replace (15) with the following:

$$w_p(\mathscr{G}) \le p^{t+2} \cdot p^4 + (t+2)p^{t+1}q \cdot p^{r+2} + \binom{t+2}{2}p^t q^2 \cdot p^{2r} + \binom{t+2}{3}p^{t-1}q^3 \cdot p^{3r-1}.$$

Similarly we can prove the following.

Claim 8. Let r = 8 and $1 \le t \le t_8 = 487$. Then we have (9).

Finally we are ready to prove the general case $r \ge 9$.

Claim 9. Let $r \ge 9$ and $1 \le t \le t_r$. Then we have (9).

Proof. We prove the result by induction on *r*. We have (9) for $1 \le t + 1 \le t_{r-1}$ using (13) with our induction hypothesis for r-1. Thus we may assume that $s \ge t+1 > t_{r-1}$, and we have

$$w_p(\mathscr{G}) \le w(n, p, r-1, s) \le w_p(\mathscr{G}_1(n, r-1, t_{r-1})) \alpha_{r-1, p}^{s-t_{r-1}}.$$

If $s \ge t+3$ then the RHS is less than ω at p = 1/2 for $t_{r-1} \le t \le t_r$ by Lemma 8. Thus we may assume that $s \le t+2$ and $1 \le h \le 2$.

Case 9-1. h = 1. Same as Case 5-1.

Case 9-2. h = 2. We use the same estimation as in Case 6-2. Then the RHS of (14) is less than ω at p = 1/2 iff

$$(a-b)/2 \le t \le (a+b)/2,$$
 (16)

where $a = 3 \cdot 2^r - 1$, $b = \sqrt{1 + 2^{2r+3} + (8r+3)2^{r+1}}$. Since $t_{r-1} \le t \le t_r$, we have (16). \Box This completes the proof of (i) of the theorem. Moreover we have proved the inequality

(8) if \mathscr{G} is tame and $\mathscr{G} \in \mathbf{X}^1(n, r, t)$.

Next we show (ii). We include the proof of this part from [33] for self-completeness. Set $\mathscr{G}_1 = \mathscr{G}_1(n, r, t)$. Let $\mathscr{G} \subset 2^{[n]}$ be a (not necessarily shifted) non-trivial *r*-wise *t*-intersecting family, and suppose that $\mathscr{G} \in \mathbf{X}^1(n, r, t)$. By Lemma 11 we can find a tame *r*-wise *t*-intersecting family \mathscr{G}^* with $w_p(\mathscr{G}^*) = w_p(\mathscr{G})$. If $\mathscr{G}^* \not\subset \mathscr{G}_1$ then we have already shown that $w_p(\mathscr{G}^*) < (1 - \gamma)w_p(\mathscr{G}_1)$. Thus we may assume that $\mathscr{G}^* \subset \mathscr{G}_1$, and in particular (by renaming the starting family if necessary) we may assume that $\mathscr{G}^* = \sigma_{xy}(\mathscr{G}) \subset \mathscr{G}_1$, where x = t + r, y = x + 1. We note that $|[x] \cap G| \ge x - 2$ for all $G \in \mathscr{G}$. Moreover if $|[x] \cap G| = x - 2$ then $G \cap \{x, y\} = \{y\}$ and $(G - \{y\}) \cup \{x\} \notin \mathscr{G}$.

For $i \in [x]$ set $\mathscr{G}(i) = \{G \in \mathscr{G} : [y] \setminus G = \{i\}\}$, and for $j \in [x-1]$ and $z \in \{x,y\}$ let $\mathscr{G}_z(j) = \{G \in \mathscr{G} : [y] \setminus G = \{j,z\}\}$. Since $\sigma_{xy}(\mathscr{G}) \subset \mathscr{G}_1$ we have $\mathscr{G}_x(j) \cap \mathscr{G}_y(j) = \emptyset$ and so

 $w_p(\mathscr{G}_x(j)) + w_p(\mathscr{G}_y(j)) \le p^{x-1}q^2$. Set $\mathscr{G}(\emptyset) = \{G \in \mathscr{G} : [x] \subset G\}, \ \mathscr{G}_{xy} = \{G \in \mathscr{G} : G \cap [y] = [x-1]\}$ and let $e = \min_{i \in [x]} w_p(\mathscr{G}(i))$. Then we have

$$w_{p}(\mathscr{G}) = \sum_{i \in [x]} w_{p}(\mathscr{G}(i)) + \sum_{j \in [x-1]} (w_{p}(\mathscr{G}_{x}(j)) + w_{p}(\mathscr{G}_{y}(j))) + w_{p}(\mathscr{G}(\emptyset)) + w_{p}(\mathscr{G}_{xy})$$
(17)
$$\leq e + (x-1)p^{x}q + (x-1)p^{x-1}q^{2} + p^{x} + p^{x-1}q^{2} = e + (\eta - 1)p^{x}q,$$
(18)

where $\eta = \frac{x}{p} + \frac{1}{q}$. Note that $e \leq p^{x}q$, and (18) coincides $w_{p}(\mathscr{G}_{1}) = \eta p^{x}q$ iff $e = p^{x}q$. If there is some $j \in [x-1]$ such that $\mathscr{G}_{x}(j) \cup \mathscr{G}_{y}(j) = \emptyset$, then by (17) we get $w_{p}(\mathscr{G}) \leq w_{p}(\mathscr{G}_{1}) - p^{x-1}q^{2} = (1 - q/(\eta p))w_{p}(\mathscr{G}_{1})$, and we are done. Thus we may assume that

 $\mathscr{G}_{x}(j) \cup \mathscr{G}_{y}(j) \neq \emptyset \text{ for all } j \in [x-1].$ (19)

To prove $w_p(\mathscr{G}) < (1 - \gamma)w_p(\mathscr{G}_1)$ by contradiction, let us assume that for any $\gamma > 0$ and any n_0 there is some $n > n_0$ such that

$$w_p(\mathscr{G}) > (1 - \gamma)w_p(\mathscr{G}_1) = (1 - \gamma)\eta p^x q.$$
⁽²⁰⁾

By (18) and (20) we have $e > (1 - \gamma \eta) p^x q$. This means, letting $\mathcal{H}(i) = \{G \setminus [y] : G \in \mathcal{G}(i)\}$ and Y = [y+1,n],

$$w_p(\mathscr{H}(i):Y)$$
 only misses at most $\gamma \eta$ *p*-weight for all $i \in [x]$. (21)

Since $\mathscr{G} \in \mathbf{X}^1(n, r, t)$ both $\bigcup_{j \in [x-1]} \mathscr{G}_x(j)$ and $\bigcup_{j \in [x-1]} \mathscr{G}_y(j)$ are non-empty. Using this with (19), we can choose $G \in \mathscr{G}_x(j)$ and $G' \in \mathscr{G}_y(j')$ with $j \neq j'$, say, j = x - 1, j' = x - 2. Let L = [r-2] and $\mathscr{H}^* = \bigcap_{\ell \in L} \mathscr{H}(\ell)$. Then by (21) we have

$$w_p(\mathscr{H}^*:Y) > 1 - (r-2)\gamma\eta.$$
⁽²²⁾

If $\mathscr{H}^* \subset 2^Y$ is not (r-2)-wise 1-intersecting, then we can find $H_\ell \in \mathscr{H}^*$ for $\ell \in L$ so that $H_1 \cap \cdots \cap H_{r-2} = \emptyset$. Setting $G_\ell := ([y] - \{\ell\}) \cup H_\ell \in \mathscr{G}$ we have $|G_1 \cap \cdots \cap G_{r-2} \cap G \cap G'| = t-1$, which contradicts the *r*-wise *t*-intersecting property of \mathscr{G} . Thus \mathscr{H}^* is (r-2)-wise 1-intersecting and $w_p(\mathscr{H}^*:Y) \leq p$ by (2). But this contradicts (22) because we can choose γ so small that $p \ll 1 - (r-2)\gamma\eta$.

4. APPLICATION

4.1. **Proof of Theorem 2.** We deduce (ii) from Theorem 4, then (i) follows from (ii). We include the proof of this part from [33] for self-completeness. Assuming the negation of Theorem 2 for some fixed $(r,t) \in A$, we will construct a counterexample to Theorem 4 (ii).

For reals 0 < b < a we write $a \pm b$ to mean the open interval (a - b, a + b) and $n(a \pm b)$ means $((a-b)n, (a+b)n) \cap \mathbb{N}$. Fix $\gamma_0 := \gamma_{\text{Thm4}}$ and $\varepsilon_0 := \varepsilon_{\text{Thm4}}$ from Theorem 4. For fixed r and t we note that $f(p) := w^*(n, p, r, t) = (t+r)p^{t+r-1}q + p^{t+r}$ is a uniformly continuous function of p on $\frac{1}{2} \pm \varepsilon_0$. Let $\gamma = \frac{\gamma_0}{4}$, $\varepsilon = \frac{\varepsilon_0}{2}$, and $I = \frac{1}{2} \pm \varepsilon$.

Choose $\varepsilon_1 \ll \varepsilon$ so that

$$(1-3\gamma)f(p) > (1-4\gamma)f(p+\delta)$$
(23)

holds for all $p \in I$ and all $0 < \delta \le \varepsilon_1$. Choose n_1 so that

$$\sum_{i \in J} {n \choose i} p_0^i (1 - p_0)^{n-i} > (1 - 3\gamma) / (1 - 2\gamma)$$
(24)

holds for all $n > n_1$ and all $p_0 \in I_0 := \frac{1}{2} \pm \frac{3\varepsilon}{2}$, where $J = n(p_0 \pm \varepsilon_1)$. Choose n_2 so that

$$(1-\gamma)|\mathscr{F}_1(n,k,r,t)| > (1-2\gamma)f(k/n)\binom{n}{k}$$
(25)

holds for all $n > n_2$ and k with $k/n \in I$. Finally set $n_0 = \max\{n_1, n_2\}$.

Suppose that Theorem 2 fails. Then for our choice of γ, ε and n_0 , we can find some n, k and $\mathscr{F} \in \mathbf{Y}^1(n, k, r, t)$ with $|\mathscr{F}| \ge (1 - \gamma)|\mathscr{F}_1(n, k, r, t)|$, where $n > n_0$ and $\frac{k}{n} \in I$. We fix n, k and \mathscr{F} , and let $p = \frac{k}{n}$. By (25) we have $|\mathscr{F}| > c\binom{n}{k}$, where $c = (1 - 2\gamma)f(p)$. Let $\mathscr{G} = \bigcup_{k \le i \le n} (\nabla_i(\mathscr{F}))$ be the collection of all upper shadows of \mathscr{F} , which belongs to $\mathbf{X}^1(n, r, t)$. Let $p_0 = p + \varepsilon_1 \in I_0$.

Claim 10. $|\nabla_i(\mathscr{F})| \ge c \binom{n}{i}$ for $i \in J$.

Proof. Choose a real $x \le n$ so that $c\binom{n}{k} = \binom{x}{n-k}$. Since $|\mathscr{F}| > c\binom{n}{k} = \binom{x}{n-k}$ the Kruskal–Katona Theorem implies that $|\nabla_i(\mathscr{F})| \ge \binom{x}{n-i}$. Thus it suffices to show that $\binom{x}{n-i} \ge c\binom{n}{i}$, or equivalently,

$$\frac{\binom{x}{n-i}}{\binom{x}{n-k}} \ge \frac{c\binom{n}{i}}{c\binom{n}{k}}.$$
(26)

Since $i \in J$ we have $i > n(p_0 - \varepsilon_1) = np = k$, and (26) is equivalent to $i \cdots (k+1) \ge (x-n+i) \cdots (x-n+k+1)$, which follows from $x \le n$.

By the claim we have

$$w_{p_0}(\mathscr{G}) \ge \sum_{i \in J} |\nabla_i(\mathscr{F})| \, p_0^i (1 - p_0)^{n-i} \ge c \sum_{i \in J} \binom{n}{i} p_0^i (1 - p_0)^{n-i}.$$
(27)

Using (24) and (23), the RHS of (27) is more than

$$c(1-3\gamma)/(1-2\gamma) = (1-3\gamma)f(p) > (1-4\gamma)f(p+\varepsilon_1) = (1-\gamma_0)f(p_0).$$

This means $w_{p_0}(\mathscr{G}) > (1 - \gamma_0) w^*(n, p_0, r, t)$, which contradicts Theorem 4 (ii) because $p_0 \in I_0 = \frac{1}{2} \pm \frac{3\varepsilon}{2} = \frac{1}{2} \pm \frac{3\varepsilon_0}{4} \subset \frac{1}{2} \pm \varepsilon_0$.

4.2. **Proof of Theorem 3.** For the cases t = 1, 2, it follows from [18, 12] that $s(n, r, t) \le s(n, 4, t) \le |\mathscr{F}_0(n, k_0, r, t)|$ with the only optimal family $\mathscr{F}_0(n, k_0, r, t)$. So we may assume that $t \ge 3$, though our proof will be valid for all $(r, t) \in A$. We are going to prove

$$s(n,r,t) = \max\{|\mathscr{F}_0(n,k_0,r,t)|, |\mathscr{F}_1(n,k_1,r,t)|\}$$

Let $\mathscr{G} \subset 2^{[n]}$ be an *r*-wise *t*-intersecting Sperner family with maximal size. If $|\bigcap \mathscr{G}| \ge t$, say $[t] \subset \bigcap \mathscr{G}$, then $\mathscr{G}' = \{G - [t] : [t] \subset G \in \mathscr{G}\}$ is Sperner, and by the Sperner theorem we have $|\mathscr{G}| = |\mathscr{G}'| \le {n-t \choose \lceil (n-t)/2 \rceil} = |\mathscr{F}_0|$ with equality holding iff $\mathscr{G}' \cong {[t+1,n] \choose \lceil (n-t)/2 \rceil}$ or ${[t+1,n] \choose \lfloor (n-t)/2 \rfloor}$, that is, $\mathscr{G} \cong \mathscr{F}_0(n, k_0, r, t)$.

So we assume that $|\bigcap \mathscr{G}| < t$. Let

$$u(\mathscr{G}) = \max\{i : |G \cap [i+1]| \ge i \text{ for all } G \in \mathscr{G}\}.$$

For a permutation τ on [n] let $\tau(\mathscr{G}) = \{\tau(G) : G \in \mathscr{G}\}$, and define $\tilde{u}(\mathscr{G}) = \max_{\tau} u(\tau(\mathscr{G}))$, where the max is taken over all possible vertex permutations. We further assume that this max is attained when τ is the identity, that is, $\tilde{u}(\mathscr{G}) = u(\mathscr{G})$. Set x = t + r.

First suppose that $\tilde{u}(\mathscr{G}) \geq x - 1$, i.e., $|G \cap [x]| \geq x - 1$ for all $G \in \mathscr{G}$. For $i \in [x]$ let $\mathscr{G}(i) = \{G \cap [x+1,n] : i \notin G \in \mathscr{G}\}$, and let $\mathscr{G}(\emptyset) = \{G \cap [x+1,n] : [x] \subset G \in \mathscr{G}\}$. Choose i_0 such that $|\mathscr{G}(i_0)| = \max_i |\mathscr{G}(i)|$. Then we have $|\mathscr{G}| \leq x |\mathscr{G}(i_0)| + |\mathscr{G}(\emptyset)|$. Set $\mathscr{A} = \mathscr{G}(i_0)$, $\mathscr{B} = \mathscr{G}(\emptyset)$, where both \mathscr{A} and \mathscr{B} are Sperner in $2^{[x+1,n]}$. Moreover we have $\mathscr{A} \cap \Delta(\mathscr{B}) = \emptyset$. Thus by Lemma 13 we have

$$|\mathscr{G}| \le x|\mathscr{A}| + |\mathscr{B}| \le x \binom{n-x}{\lceil \frac{n-x}{2} \rceil} + \binom{n-x}{\lceil \frac{n-x}{2} \rceil - 1} = |\mathscr{F}_1(n,k_1,r,t)|,$$

with equality holding iff $\mathscr{G} \cong \mathscr{F}_1(n, k_1, r, t)$. This completes the proof for the case $\tilde{u}(\mathscr{G}) \ge x-1$.

From now on we assume that $\tilde{u}(\mathscr{G}) < x - 1$. We will show that

$$|\mathscr{G}| < (1 - \frac{\xi}{2}) \max\{|\mathscr{F}_0|, |\mathscr{F}_1|\}$$

for some $\xi > 0$. Let $\mathscr{G}_{\ell} = \mathscr{G} \cap {\binom{[n]}{\ell}}$ and $L = \{\ell : \mathscr{G}_{\ell} \neq \emptyset\}.$

Claim 11. $L \subset \left\lfloor \lfloor \frac{n}{2} \rfloor, n \right\rfloor$.

Proof. Let *a* and *b* be the least and second least element of *L* respectively, and let $\mathscr{H} = (\mathscr{G} - \mathscr{G}_a) \cup \nabla_b(\mathscr{G}_a)$. Then \mathscr{H} is *r*-wise *t*-intersecting Sperner. If a + b < n then we have $|\nabla_b(\mathscr{G}_a)| > |\mathscr{G}_a|$ by Lemma 12, which means $|\mathscr{H}| > |\mathscr{G}|$. Thus we may assume $|L \cap [0, \lfloor \frac{n}{2} \rfloor - 1]| \le 1$. If this number is one, then we repeat the same exchange operation for $a = \min L$ and $b = \lfloor \frac{n}{2} \rfloor$. Consequently $L \subset [\lfloor \frac{n}{2} \rfloor, n]$ follows from the maximality of \mathscr{G} . \Box

Choose $\varepsilon > 0$ from Theorem 2 and set $a = \min(L \cap \lfloor \lfloor \frac{n}{2} \rfloor, (\frac{1}{2} + \varepsilon)n))$. We choose a vertex permutation ρ so that $\tilde{u}(\mathscr{G}_a) = u(\rho(\mathscr{G}_a))$. Since $\tilde{u}(\mathscr{G}) < x - 1$ we still have $u(\rho(\mathscr{G})) < x - 1$. We rearrange the vertex set so that ρ is the identity. For a real $p \in (0, 1)$, let $f_1(p) = p^t$, $f_2(p) = xp^{x-1}(1-p) + p^x$ and $f(p) = \max\{f_1(p), f_2(p)\}$. We note that

$$\max\{|\mathscr{F}_0(n,k_0,r,t)|,|\mathscr{F}_1(n,k_1,r,t)|\} = (f(\frac{1}{2}) + o(1))\binom{n}{\lfloor n/2 \rfloor}.$$
(28)

Claim 12. There exists $\xi > 0$ such that $|\mathscr{G}_a| < (1-2\xi)f(\frac{a}{n})\binom{n}{a}$.

Proof. First suppose that \mathscr{G}_a is trivial and $[t] \subset G$ for all $G \in \mathscr{G}_a$. Since \mathscr{G} is non-trivial we can find $H \in \mathscr{G}$ such that $|[t] \cap H| < t$. Thus $\mathscr{G}'_a := \{G - [t] : G \in \mathscr{G}_a\}$ is (r-1)-wise 1-intersecting and

$$\begin{split} |\mathcal{G}_a| &= |\mathcal{G}'_a| \le m(n-t, a-t, r-1, 1) = \binom{n-t-1}{a-t-1} \\ &= ((a/n)^{t+1} + o(1))\binom{n}{a} < (1-\gamma_1)f_1(a/n)\binom{n}{a}. \end{split}$$

Next suppose that \mathscr{G}_a is non-trivial, i.e., $|\bigcap \mathscr{G}_a| < t$. If $\tilde{u}(\mathscr{G}_a) < x - 1$, namely, if $\mathscr{G}_a \in \mathbf{Y}^1(n, a, r, t)$, then $|\mathscr{G}_a| < (1 - \gamma_2) f_2(a/n) \binom{n}{a}$ follows from Theorem 2. Thus we may assume that $\tilde{u}(\mathscr{G}_a) = u(\mathscr{G}_a) \ge x - 1$.

Let $\mathscr{G}_a(i) = \{G \cap [x+1,n] : i \notin G \in \mathscr{G}_a\}$ and $\mathscr{G}_a(\emptyset) = \{G - [x] : [x] \subset G \in \mathscr{G}_a\}$. Set $e = \min_{i \in [x]} |\mathscr{G}_a(i)|$. Since $|\mathscr{G}_a| = \sum_{i=1}^x |\mathscr{G}_a(i)| + |\mathscr{G}_a(\emptyset)|$ we have

$$|\mathscr{G}_{a}| \le e + (x-1)\binom{n-x}{a-x+1} + \binom{n-x}{a-x}.$$
(29)

Suppose that $|\mathscr{G}_a| > (1 - \gamma_3) f_2(a/n) {n \choose a} = (1 - \gamma_3)(1 + o(1))(x {n-x \choose a-x+1} + {n-x \choose a-x})$ holds for any $\gamma_3 > 0$. Then by (29) we have $e > (1 - \gamma_3(x+2)) {n-x \choose a-x+1}$. This means $\mathscr{G}_a(i)$ only misses at most $\gamma_3(x+2)$ portion of ${[x+1,n] \choose a-x+1}$ for all $i \in [x]$. Since $u(\mathscr{G}) < x - 1$ we can find some $G \in \mathscr{G} - \mathscr{G}_a$ such that $|G \cap [x]| \le x - 2$, say, $G \not\ni x - 1, x$. Let $\mathscr{G}_a^* = \bigcap_{i=1}^{r-1} \mathscr{G}_a(i)$. Then we have

$$|\mathscr{G}_{a}^{*}| > \left(1 - (r-1)\gamma_{3}(x+2)\right) \binom{n-x}{a-x+1}.$$
(30)

If $\mathscr{G}_a^* \subset {[x+1,n] \choose a-x+1}$ is not (r-1)-wise 1-intersecting, then we can find $G_i^* \in \mathscr{G}_a^*$ for $i \in [r-1]$ so that $G_1^* \cap \cdots \cap G_{r-1}^* = \emptyset$. Setting $G_i := ([x] - \{i\}) \cup G_i^* \in \mathscr{G}$ we have $|G_1 \cap \cdots \cap G_{r-1} \cap G| = t-1$, which contradicts the *r*-wise *t*-intersecting property of \mathscr{G} . Thus \mathscr{G}_a^* is (r-1)-wise 1-intersecting and $|\mathscr{G}_a^*| \le {n-x-1 \choose a-x}$, which contradicts (30) because we can choose $\gamma_3 > 0$ arbitrarily small. Therefore there is some $\gamma_3 > 0$ such that $|\mathscr{G}_a| < (1-\gamma_3)f_2(a/n){n \choose a}$.

Finally we get the claim by setting $\xi = (1/2) \max{\{\gamma_1, \gamma_2, \gamma_3\}}$. Since *f* is continuous, we can chose a constant μ , $0 < \mu \ll \varepsilon$, so that

$$(1-2\xi)f(\frac{1}{2}+\mu) < (1-\xi)f(\frac{1}{2}).$$

Set $M = M(\mathscr{G}) = \{k \in \lfloor \lfloor \frac{n}{2} \rfloor, (\frac{1}{2} + \mu)n) : \mathscr{G}_k \neq \emptyset\}.$

Claim 13. $\sum_{k \in M} |\mathscr{G}_k| / {n \choose k} < (1 - \xi) f(\frac{1}{2}).$

Proof. It will be shown by induction on m = |M|. The case $M = \{k\}$ follows from Claim 12; in fact noting that f is increasing on $[\frac{1}{2}, \frac{1}{2} + \mu]$ we have

$$|\mathscr{G}_k|/\binom{n}{k} < (1-2\xi)f(\frac{k}{n}) < (1-2\xi)f(\frac{1}{2}+\mu) < (1-\xi)f(\frac{1}{2}).$$

Next we assume that our claim holds for m-1. Let a and b be the least and second least element of M, and let $\mathscr{H} = (\mathscr{G} - \mathscr{G}_a) \cup \nabla_b(\mathscr{G}_a)$. Then \mathscr{H} is *r*-wise *t*-intersecting Sperner and $M(\mathscr{H}) = M(\mathscr{G}) - \{a\}$. By Lemma 12, we have $|\mathscr{G}_a|/\binom{n}{a} \leq |\nabla_b(\mathscr{G}_a)|/\binom{n}{b}$, which means

$$\sum_{k \in M(\mathscr{G})} \frac{|\mathscr{G}_k|}{\binom{n}{k}} \leq \sum_{k \in M(\mathscr{H})} \frac{|\mathscr{H}_k|}{\binom{n}{k}}$$

and the RHS is less than $(1-\xi)f(\frac{1}{2})$ by the induction hypothesis.

By Claim 13 we have

$$(1-\xi)f(\frac{1}{2}) > \sum_{k \in M} \frac{|\mathscr{G}_k|}{\binom{n}{k}} \ge \frac{1}{\binom{n}{\lfloor n/2 \rfloor}} \sum_{k \in M} |\mathscr{G}_k|.$$

On the other hand, by the Yamamoto inequality, we have

$$1 \ge \sum_{k \in L-M} \frac{|\mathscr{G}_k|}{\binom{n}{k}} \ge \frac{1}{\binom{n}{(\frac{1}{2}+\mu)n}} \sum_{k \in L-M} |\mathscr{G}_k|,$$

where we used $L - M \subset [(\frac{1}{2} + \mu)n, n]$ by Claim 11. Consequently we have

$$|\mathscr{G}| = \sum_{k \in L} |\mathscr{G}_k| < (1 - \xi) f(\frac{1}{2}) \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{(\frac{1}{2} + \mu)n} < (1 - \frac{\xi}{2}) f(\frac{1}{2}) \binom{n}{\lfloor n/2 \rfloor},$$

and the RHS is less than $\max\{|\mathscr{F}_0|, |\mathscr{F}_1|\}$ by (28).

4.3. **Proof of Theorem 6.** Let *r* and *t* be fixed. Assuming the negation of Theorem 6, we will construct a counterexample to (i) of Theorem 4. Fix $\varepsilon := \varepsilon_{\text{Thm4}}$ from Theorem 4 and let $p_0 = \frac{1}{2} - \frac{\varepsilon}{2}$. Since $p_0 < \frac{1}{2}$ and $t \le 2^r - r - 1$ we have $w_{p_0}(\mathscr{G}_0(n, r, t)) = p_0^t > w_{p_0}(\mathscr{G}_1(n, r, t))$ by Lemma 1. Thus we can choose $\gamma > 0$ so that

$$(1-2\gamma)p_0^t > w_{p_0}(\mathscr{G}_1(n,r,t)).$$
 (31)

Then choose n_0 so that

$$\sum_{i \in J} {\binom{n-t}{i-t}} p_0^i (1-p_0)^{n-i} > p_0^t (1-2\gamma)/(1-\gamma)$$
(32)

holds for all $n > n_0$, where $J = ((p_0 - \frac{\varepsilon}{2})n, (p_0 + \frac{\varepsilon}{2})n) \cap \mathbb{N}$.

Suppose that Theorem 6 fails. Then for our choice of ε , γ and n_0 , we can find some n, k and $\mathscr{F} \in \mathbf{Y}^0(n, k, r, t)$ with $|\mathscr{F}| \ge (1 - \gamma) \binom{n-t}{k-t}$, where $n > n_0$ and $\frac{k}{n} < \frac{1}{2} - \varepsilon = p_0 - \frac{\varepsilon}{2}$. We fix n, k and \mathscr{F} . Let $\mathscr{G} = \bigcup_{k \le i \le n} (\nabla_i(\mathscr{F}))$ be the collection of all upper shadows of \mathscr{F} , which is non-trivial *r*-wise *t*-intersecting, i.e., $\mathscr{G} \in \mathbf{X}^0(n, r, t)$.

Claim 14. $|\nabla_i(\mathscr{F})| \ge (1-\gamma)\binom{n-t}{i-t}$ for $i \in J$.

Proof. Choose a real $x \le n-t$ so that $(1-\gamma)\binom{n-t}{k-t} = \binom{x}{n-k}$. Since $|\mathscr{F}| \ge \binom{x}{n-k}$ the Kruskal–Katona Theorem implies that $|\nabla_i(\mathscr{F})| \ge \binom{x}{n-i}$. Thus it suffices to show that $\binom{x}{n-i} \ge (1-\gamma)\binom{n-t}{i-t}$, or equivalently,

$$\frac{\binom{x}{n-i}}{\binom{x}{n-k}} \ge \frac{(1-\gamma)\binom{n-t}{i-t}}{(1-\gamma)\binom{n-t}{k-t}}.$$
(33)

Since $i \in J$ we have $i > (p_0 - \frac{\varepsilon}{2})n > k$, and (33) is equivalent to $(i-t)\cdots(k-t+1) \ge (x-n+i)\cdots(x-n+k+1)$, which follows from $x \le n-t$.

By the claim we have

$$w_{p_0}(\mathscr{G}) \ge \sum_{i \in J} |\nabla_i(\mathscr{F})| \, p_0^i (1 - p_0)^{n-i} \ge (1 - \gamma) \sum_{i \in J} \binom{n-i}{i-t} p_0^i (1 - p_0)^{n-i}. \tag{34}$$

By (32) and (31), the RHS of (34) is more than $(1-\gamma) \cdot p_0^t (1-2\gamma)/(1-\gamma) = p_0^t (1-2\gamma) > w_{p_0}(\mathscr{G}_1(n,r,t))$, which contradicts Theorem 4 (i).

4.4. **Proof of Theorem 7.** Let $\varepsilon > 0$ and $p < \frac{1}{2} - \varepsilon$ be given. By Theorem 6 we can find $0 < \gamma \ll 1/4$ and n_0 so that $m^*(n,k,r,t) < (1-2\gamma)\binom{n-t}{k-t}$ for all $n > n_0$ and k with $\frac{k}{n} < \frac{1}{2} - \frac{\varepsilon}{2}$. Choose $0 < \delta \ll \varepsilon$ so that $(p - \delta, p + \delta) \subset (0, \frac{1}{2} - \delta)$. Choose n_1 so that

$$(1-2\gamma)\sum_{k\in J} \binom{n-t}{k-t} p^k q^{n-k} + \sum_{k\notin J} \binom{n}{k} p^k q^{n-k} < (1-\gamma)p^t$$

$$(35)$$

holds for all $n > n_1$, where $J = ((p - \delta)n, (p + \delta)n) \cap \mathbb{N}$. Let $n > \max\{n_0, n_1\}$ and choose $\mathscr{G} \in \mathbf{X}^0(n, r, t)$ with $w_p(\mathscr{G}) = w^*(n, p, r, t)$. Let $\mathscr{G}_k = \mathscr{G} \cap {\binom{[n]}{k}}$ for $k \in J$. If $\mathscr{G}_k \in \mathbf{Y}^0(n, k, r, t)$ then by Theorem 6 we have $|\mathscr{G}_k| < (1 - 2\gamma) {\binom{n-t}{k-t}}$. If \mathscr{G}_k fixes t

If $\mathscr{G}_k \in \mathbf{Y}^0(n,k,r,t)$ then by Theorem 6 we have $|\mathscr{G}_k| < (1-2\gamma)\binom{n-t}{k-t}$. If \mathscr{G}_k fixes t vertices, say [t], then $\mathscr{G}'_k := \{G - [t] : G \in \mathscr{G}\}$ is (r-1)-wise 1-intersecting. (Otherwise \mathscr{G} fixes [t].) Thus we have $|\mathscr{G}_k| = |\mathscr{G}'_k| \le \binom{n-t-1}{k-t-1}$. Consequently, in both cases, we have

$$|\mathscr{G}_k| < (1 - 2\gamma) \binom{n-t}{k-t}.$$
(36)

Using (36) and (35), we have

$$w_p(\mathscr{G}) \leq \sum_{k \in J} |\mathscr{G}_k| p^k q^{n-k} + \sum_{k \notin J} \binom{n}{k} p^k q^{n-k} < (1-\gamma) p^t,$$

and this is true for all $n \ge t$ by Lemma 10.

REFERENCES

- R. Ahlswede, L.H. Khachatrian. The complete nontrivial-intersection theorem for systems of finite sets. J. Combin. Theory (A), 76:121-138, 1996.
- [2] R. Ahlswede, L.H. Khachatrian. The complete intersection theorem for systems of finite sets. *European J. Combin.*, 18:125–136, 1997.
- [3] R. Ahlswede, L.H. Khachatrian. The diametric theorem in Hamming spaces Optimal anticodes. *Adv. in Appl. Math.*, 20:429–449, 1998.
- [4] A. Brace, D. E. Daykin. A finite set covering theorem. Bull. Austral. Math. Soc., 5:197–202, 1971.
- [5] C. Bey, K. Engel. Old and new results for the weighted *t*-intersection problem via AK-methods. *Numbers, Information and Complexity, Althofer, Ingo, Eds. et al., Dordrecht*, Kluwer Academic Publishers, 45–74, 2000.
- [6] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313–320, 1961.
- [7] I. Dinur, S. Safra. On the Hardness of Approximating Minimum Vertex-Cover. Annals of Mathematics, 162:439-485, 2005.
- [8] P. Frankl. On Sperner families satisfying an additional condition. J. Combin. Theory (A), 20:1–11, 1976.
- [9] P. Frankl. The Erdős–Ko–Rado theorem is true for *n* = *ckt*. *Combinatorics (Proc. Fifth Hungarian Colloq., Keszthey, 1976), Vol. I,* 365–375, Colloq. math. Soc. János Bolyai, 18, North–Holland, 1978.
- [10] P. Frankl. On intersecting families of finite sets. J. Combin. Theory (A), 24:141–161, 1978.
- [11] P. Frankl. Multiply-intersecting families. J. Combin. Theory (B), 53:195–234, 1991.
- [12] P. Frankl, N. Tokushige. Weighted 3-wise 2-intersecting families. J. Combin. Theory (A) 100:94–115, 2002.
- [13] P. Frankl, N. Tokushige. Weighted multiply intersecting families. *Studia Sci. Math. Hungarica* 40:287–291, 2003.
- [14] P. Frankl, N. Tokushige. Random walks and multiply intersecting families. J. Combin. Theory (A), 109:121-134, 2005.
- [15] P. Frankl, N. Tokushige. Weighted non-trivial multiply intersecting families. *Combinatorica*, 26 37–46, 2006.
- [16] E. Friedgut. On the measure of intersecting families, uniqueness and stability. preprint.
- [17] H.-D.O.F. Gronau. On Sperner families in which no 3-sets have an empty intersection. Acta Cybernet., 4:213–220, 1978.
- [18] H.-D.O.F. Gronau. On Sperner families in which no *k*-sets have an empty intersection. J. Combin. *Theory* (A), 28:54–63, 1980.

- [19] H.-D.O.F. Gronau. On Sperner families in which no *k*-sets have an empty intersection II. *J. Combin. Theory* (*A*), 30:298–316, 1981.
- [20] H.-D.O.F. Gronau. On Sperner families in which no *k*-sets have an empty intersection III. *Combina-torica*, 2:25–36, 1982.
- [21] A. J. W. Hilton, E. C. Milner. Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford, 18:369–384, 1967.
- [22] G.O.H. Katona. Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hung., 15:329– 337, 1964.
- [23] G.O.H. Katona. A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966 (Akademiai Kiadó, 1968) 187–207.
- [24] J.B. Kruskal. The number of simplices in a complex, in: Math. Opt. Techniques (Univ. of Calif. Press, 1963) 251–278.
- [25] E.C. Milner. A combinatorial theorem on systems of sets. J. London Math. Soc., 43:204–206, 1968.
- [26] D. Mubayi. An intersection theorem for four sets. Advances in Mathematics, to appear.
- [27] D. Mubayi, J. Verstraëte. Proof of a conjecture of Erdős on triangles in set-systems. *Combinatorica*, 25:599–614, 2005.
- [28] E. Sperner. Ein Satz über Untermengen einer endlichen Mente. Math. Zeitschrift, 27:544–548, 1928.
- [29] N. Tokushige. Intersecting families uniform versus weighted. Ryukyu Math. J., 18:89–103, 2005.
- [30] N. Tokushige. Extending the Erdős-Ko-Rado theorem. J. Combin. Designs, 14:52–55, 2006.
- [31] N. Tokushige. The maximum size of 3-wise *t*-intersecting families. *European J. Combin*, 28:152–166, 2007.
- [32] N. Tokushige. EKR type inequalities for 4-wise intersecting families. *J. Combin. Theory (A)*, In Press, Corrected Proof, Available online 15 September 2006.
- [33] N. Tokushige. Brace–Daykin type inequalities for intersecting families. *European J. Combin*, In Press, Corrected Proof, Available online 13 October 2006
- [34] R.M. Wilson. The exact bound in the Erdős–Ko–Rado theorem. Combinatorica, 4:247–257, 1984.
- [35] K. Yamamoto. Logarithmic order of free distributive lattices. J. Math. Soc. Japan, 6:343–353, 1954.

COLLEGE OF EDUCATION, RYUKYU UNIVERSITY, NISHIHARA, OKINAWA, 903-0213 JAPAN *E-mail address*: hide@edu.u-ryukyu.ac.jp