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ABSTRACT. Motivated by the Frankl’s results in [11] (“Multiply-intersecting families,”
J. Combin. Theory (B) 1991), we consider some problems concerning the maximum
size of multiply-intersecting families with additional conditions. Among other results,
we show the following version of the Erdős–Ko–Rado theorem: for allr ≥ 8 and1≤ t ≤
2r+1−3r−1 there exist positive constantsε andn0 such that ifn> n0 and| kn− 1

2|< ε then
r-wise t-intersectingk-uniform families onn vertices have size at mostmax{(n−t

k−t

)
,(t +

r)
( n−t−r

k−t−r+1

)
+

(n−t−r
k−t−r

)}.

1. INTRODUCTION

A family (or hypergraph)G ⊂ 2[n] is calledr-wise t-intersecting if|G1∩ ·· · ∩Gr | ≥ t
holds for allG1, . . . ,Gr ∈ G . The aim of this paper is to find largestr-wise t-intersecting
families with some additional conditions, which extends some of Frankl’s results and his
proof technique developed in [11]. Let us define a typicalr-wise t-intersecting family
Gi(n, r, t) and itsk-uniform subfamilyFi(n,k, r, t) as follows:

Gi(n, r, t) = {G⊂ [n] : |G∩ [t + ri ]| ≥ t +(r−1)i},
Fi(n,k, r, t) = Gi(n, r, t)∩ ([n]

k

)
.

An r-wiset-intersecting familyG is callednon-trivial if |⋂G |< t, where
⋂

G :=
⋂

G∈G G.
Two familiesG ,G ′ ⊂ 2[n] are said to be isomorphic and denoted byG ∼= G ′ if there exists
a vertex permutationτ on [n] such thatG ′ = {{τ(g) : g∈G} : G∈ G }.

Let m(n,k, r, t) be the maximal size ofk-uniform r-wise t-intersecting families onn
vertices. To determinem(n,k, r, t) is one of the oldest problems in extremal set theory,
which is still widely open. The caser = 2 was observed by Erdős–Ko–Rado[6], Frankl[9],
Wilson[34], and thenm(n,k,2, t) = maxi |Fi(n,k,2, t)| was finally proved by Ahlswede
and Khachatrian[2]. Frankl[8] showedm(n,k, r,1) = |F0(n,k, r,1)| if (r −1)n≥ rk, see
also [20, 27]. Partial results for the casesr ≥ 3 andt ≥ 2 are found in [12, 14, 29, 30, 31,
32]. All known results suggest

m(n,k, r, t) = max
i
|Fi(n,k, r, t)|
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in general, and we will consider the case when the maximum is attained byF0 or F1. To
state our result let us define a listA of acceptable parameters as follows.

A = {(r, t) : r ≥ 5,1≤ t ≤ 2r+1−3r−1}
−{(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(7,1)}. (1)

Theorem 1. Let (r, t) ∈ A be fixed. Then there exist positive constantsε ,n0 such that

m(n,k, r, t) = max{|F0(n,k, r, t)|, |F1(n,k, r, t)|}
holds for alln> n0 andk with | kn− 1

2|< ε. MoreoverF0(n,k, r, t) andF1(n,k, r, t) are the
only optimal configurations (up to isomorphism).

We note that|F0(n,k, r, t)| = (n−t
k−t

)
and |F1(n,k, r, t)| = (t + r)

( n−t−r
k−t−r+1

)
+

(n−t−r
k−t−r

)
.

Some computation shows that if(r, t) ∈ A and r ¿ k thenmax{|F0|, |F1|} is attained
by

{
F0(n,k, r, t) if 1≤ t ≤ 2r − r−2, or t = 2r − r−1 andn≥ 2k−2r + dr/2e+3,
F1(n,k, r, t) if t ≥ 2r − r, or t = 2r − r−1 andn≤ 2k−2r + dr/2e+2.

Conjecture 1. Theorem 1 is true for allr ≥ 3 and1≤ t ≤ 2r+1−3r−1.

Let m∗(n,k, r, t) be the maximal size of non-trivialk-uniform r-wiset-intersecting fam-
ilies on n vertices. Ahlswede and Khachatrian[1] determinedm∗(n,k,2, t) completely,
which included earlier results of Hilton–Milner[21] and Frankl[10]. In [33] ak-uniform
version of the Brace–Daykin theorem[4] is considered form∗(n,k, r ≥ 7,2) andk/n≈ 1/2.
To state our result let us define some families ofk-uniform hypergraphs as follows.

F(n,k, r, t) = {F ⊂ ([n]
k

)
: F is r-wiset-intersecting},

F j(n,k, r, t) = {F ⊂ ([n]
k

)
: F ⊂F ′ for someF ′ ∼= F j(n,k, r, t)},

Y i(n,k, r, t) = F(n,k, r, t)−
⋃

0≤ j≤i

F j(n,k, r, t).

For fixedn,k, r, t, we clearly haveF j ⊂ F. We are interested inm∗ = max{|F | : F ∈ Y0}.
It seems that hypergraphs inF with nearly largest size only come from someF j , moreover
they are stable in a sense, namely,max{|F | : F ∈Y1}< (1−γ)m∗ for some fixed constant
γ > 0. (See [16, 26] for more about stability type results.) We verify this phenomenon in
the caset ≤ 2r+1−3r−1 andk/n≈ 1/2.

Theorem 2. Let (r, t) ∈ A be fixed, whereA is defined by (1). Then there exist positive
constantsγ ,ε,n0 such that the following (i) and (ii) are true for alln > n0 and k with
| kn− 1

2|< ε.

(i) m∗(n,k, r, t) = |F1(n,k, r, t)|.
(ii) If F ∈ Y1(n,k, r, t) then|F |< (1− γ)m∗(n,k, r, t).

The above result immediately implies Theorem 1. We also apply this result to get a
Sperner type inequality. A familyG ⊂ 2[n] is called a Sperner family ifG 6⊂G′ holds for all
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distinctG,G′ ∈ G . Let s(n, r, t) be the maximal size ofr-wiset-intersecting Sperner fami-
lies onn vertices. Milner[25] proveds(n, r = 2, t) =

( n
d(n+t)/2e

)
. Frankl[8] and Gronau[17,

18, 19, 20] determineds(n, r = 3, t = 1) for n≥ 53. Gronau[18] also proveds(n, r ≥ 4, t =
1) =

( n−1
d(n−1)/2e

)
for all n. For sufficiently largen, it was proved thats(n, r ≥ 4, t = 2) =( n−2

d(n−2)/2e
)

in [12], s(n, r, t) =
( n−t
d(n−t)/2e

)
for r ≥ 5 and1≤ t ≤ 2r−2 log2−1 in [29], and

s(n, r = 3, t = 2) was determined in [12, 14]. Using Theorem 2 we prove the following.

Theorem 3. Let r ≥ 7 and1≤ t ≤ 2r+1−3r−1. Then there existsn0 such that

s(n, r, t) =
{ |F0(n,k0, r, t)| if 1≤ t ≤ 2r − r−2
|F1(n,k1, r, t)| if 2r − r−1≤ t ≤ 2r+1−3r−1

for all n > n0, wherek0 ∈ {t + dn−t
2 e, t + bn−t

2 c} andk1 = t + r−1+ dn−t−r
2 e. Moreover

F0(n,k0, r, t) andF1(n,k1, r, t) are the only optimal configurations (up to isomorphism).

Conjecture 2. Theorem 3 is true for4≤ r ≤ 6 as well.

Due to the results mentioned above [18, 12], the conjecture is true fort = 1,2. Our
proof of Theorem 3 is valid for all(r, t) ∈ A, and the conjecture is open for(r, t) ∈ {(4, t) :
3≤ t ≤ 19}∪{(5,3),(5,4),(6,3)}. The conjecture fails forr = 3. In fact it is known from
[8, 17, 14] thats(n = 2m,3,1) =

(n−1
m

)
+ 1, s(n = 2m+ 1,3,2) =

(n−2
m

)
+ 2 (for n large

enough). The exact value ofs(n,3,3) is not known, whiles(n = 2m,3,3)≥ (n−3
m−1

)
+3.

Finally we introduce a weighted version of Frankl’s result in [11], which was a starting
point of this research. Throughout this paper,p andq= 1−pdenote positive real numbers.
For a familyG ⊂ 2X we define thep-weight ofG , denoted bywp(G : X), as follows:

wp(G : X) = ∑
G∈G

p|G|q|X|−|G| =
|X|
∑
i=0

∣∣∣G ∩
(X

i

)∣∣∣ piq|X|−i .

We simply writewp(G ) for the caseX = [n].
Let w(n, p, r, t) be the maximalp-weight ofr-wiset-intersecting families onn vertices,

and letw∗(n, p, r, t) be the maximalp-weight of non-trivialr-wise t-intersecting families
onn vertices. It might be natural to expect

w(n, p, r, t) = max
i

wp(Gi(n, r, t)).

Ahlswede and Khachatrian proved that this is true forr = 2 in [3] (cf. [5, 7, 29]). This
includes the Katona theorem[22] aboutw(n,1/2,2, t). It is shown in [13] that

w(n, p, r,1) = wp(G0(n, r,1)) = p for p≤ (r−1)/r. (2)

Partial results forw∗(n, p, r,1) are found in [15, 33], which extend the result of Brace–
Daykin[4]: w∗(n,1/2, r,1) = w1/2(G1(n, r,1)). Let us define some families of hypergraphs
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as follows.

G(n, r, t) = {G ⊂ 2[n] : G is r-wiset-intersecting},
G j(n, r, t) = {G ⊂ 2[n] : G ⊂ G ′ for someG ′ ∼= G j(n, r, t)},
X i(n, r, t) = G(n, r, t)−

⋃

0≤ j≤i

G j(n, r, t).

Now we state the main result in this paper, which will imply Theorem 2.

Theorem 4. Let (r, t) ∈ A be fixed, whereA is defined by (1). Then there exist positive
constantsγ ,ε such that the following (i) and (ii) are true for alln ≥ r + t and p with
|p− 1

2|< ε.
(i) w∗(n, p, r, t) = wp(G1(n, r, t)).
(ii) If G ∈ X1(n, r, t) thenwp(G ) < (1− γ)w∗(n, p, r, t).

In [15] it is shown by construction thatw∗(n, p,5,1) > wp(G1(n,5,1)) for all 1/2 <

p < (1+
√

21)/10. Theorem 4 could be true for allr ≥ 5 with only exceptionr = 5 and
t = 1, and the same extension could be expected for Theorem 2. The upper bound fort
set by (1) in Theorem 4 (and also Theorems 2 and 3) is best possible. In fact we have
wp(G2(n, r, t)) > wp(G1(n, r, t)) for t ≥ 2r+1−3r, see Lemma 2 in the next section. We
emphasize that Frankl has already got a special case of (i) of Theorem 4 in [11] (Theo-
rem 6.4), where he proved

w∗(n,1/2, r, t) = w1/2(G1(n, r, t)) for r ≥ 5 and1≤ t ≤ 2r − r−1. (3)

Our proof of (i) is based on his idea, but changing the weight from1/2 to p is not straight-
forward. As we mentioned above, (3) is no longer true if we replace1/2 with 1/2+ ε for
the caser = 5 andt = 1. One of the main reasons comes from the fact

w∗(n,1/2,3,2) < 0.773(1/2)2,

which Frankl used as a base case for his proof of (3), while in our case we only have

lim
n→∞

w∗(n, p,3,2) = p2

for p = 1/2+ ε, see [12]. We will use results from [12, 29, 32] for our base case, which
givew(n, p, r, t) for r = 4,5, see Lemma 5. Theorem 4 implies the following immediately.

Theorem 5. Let (r, t) ∈ A be fixed. Then there exists positive constantε such that

w(n, p, r, t) = max{wp(G0(n, r, t)), wp(G1(n, r, t))}
holds for alln≥ r + t and p with |p− 1

2| < ε. MoreoverG0(n, r, t) andG1(n, r, t) are the
only optimal configurations (up to isomorphism).

Comparingwp(G1) andwp(G2) (see Lemma 1 in the next section), we find that if(r, t)∈
A thenmax{wp(G1), wp(G2)} is attained by

{
G0(n, r, t) if 1≤ t ≤ 2r − r−2, or t = 2r − r−1 andp≤ 1/2,
G1(n, r, t) if t ≥ 2r − r, or t = 2r − r−1 andp > 1/2.
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In Theorems 1 and 5, we focused on the case when the range fork/n or p is around1/2.
We can extend this range for the caset ≤ 2r − r−1 as follows.

Theorem 6. Let (r, t) ∈ A and t ≤ 2r − r − 1. Then for all ε > 0 there exist positive
constantsγ ,n0 such thatm∗(n,k, r, t) < (1− γ)

(n−t
k−t

)
holds for alln > n0 andk with k

n <
1
2 − ε. In particular, we havem(n,k, r, t) =

(n−t
k−t

)
, andF0(n,k, r, t) is the only optimal

family (up to isomorphism).

Theorem 7. Let (r, t) ∈ A and t ≤ 2r − r − 1. Then for allε > 0 there exists positive
constantγ such thatw∗(n, p, r, t) < (1− γ)pt holds for alln≥ t and p with p < 1

2 − ε.
In particular, we havew(n, p, r, t) = pt , andG0(n, r, t) is the only optimal family (up to
isomorphism).

As the reader might expect,m(n,k, r, t)/
(n

k

)
and w(n, p, r, t) are closely related when

p≈ k/n. This was observed by Dinur and Safra in [7] for the caser = 2. See also [29] for
more general setting. We will fully use this relation to prove our results.

In Section 2, we prepare some tools for the proofs. We prove Theorem 4 in Section 3.
In the last section, we prove the other theorems in the following implication.

Theorem 3⇐ Theorem 2⇐ Theorem 4⇒ Theorem 6⇒ Theorem 7

2. TOOLS

2.1. Some inequalities.To find w(n, p, r, t) we need to knowmaxi wp(Gi(n, r, t)). So let
us start with comparingwp(G0(n, r, t)) = pt andwp(G1(n, r, t)) = (t + r)pt+r−1q+ pt+r .
Then we havewp(G0)≥ wp(G1) iff t ≤ (p1−r − p)/q− r =: f (p). We note thatf (1/2) =
2r− r−1, and f (p) is decreasing iff1−qr− pr < 0 (and this is so forp= 1/2 andr ≥ 2).
Thus we have the following.

Lemma 1. For everyr ≥ 2 there existsε > 0 such thatwp(G0(n, r, t)) ≥ wp(G1(n, r, t))
holds for p ∈ (1/2− ε,1/2] iff 1≤ t ≤ 2r − r − 1, andwp(G0(n, r, t)) > wp(G1(n, r, t))
holds forp∈ (1/2,1/2+ ε) iff 1≤ t ≤ 2r − r−2.

Lemma 2. For everyr ≥ 3 there existsε > 0 such thatwp(G1(n, r, t)) > wp(G2(n, r, t))
holds for allp with |p−1/2|< ε iff 1≤ t ≤ 2r+1−3r−1.

Proof. Sincewp(G ) is a continuous function ofp (for fixedG ), it is sufficient to show the
casep = 1/2. So setp = 1/2 and letG1 = G1(n, r, t) andG2 = G2(n, r, t). First we note
thatwp(G1) > wp(G2) iff wp(G1\G2) > wp(G2\G1), and

G1\G2 = {G⊂ [n] : [t + r]⊂G, |G∩ [t + r +1, t +2r]|< r−2}
∪ {G⊂ [n] : |G∩ [t + r]|= t + r−1, |G∩ [t + r +1, t +2r]|< r−1},

G2\G1 = {G⊂ [n] : |G∩ [t + r]|= t + r−2, [t + r +1, t +2r]⊂G}.
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Then we have

wp(G1\G2) = pt+2r
(

∑r−3
j=0

(r
j

)
+(t + r)∑r−2

j=0

(r
j

))

= pt+2r
(
(t + r +1)(2r −1− r)− (r

2

))
,

wp(G2\G1) = pt+2r
(t+r

2

)
.

Thus we havewp(G1) = wp(G2) iff f (t) := (t +r +1)(2r−1−r)−(r
2

)−(t+r
2

)
= 0, and this

quadratic equation oft has only one positive root. We havef (2r+1−3r−1) = 2r− r2/2−
r/2−1 > 0 and f (2r+1−3r) =−(r2− r +2)/2 < 0, which completes the proof. ¤

Similarly one can prove the following.

Lemma 3. Let j = 3,4. For everyr ≥ j +2 there existsε > 0 such thatwp(G j−1(n, r, t)) >
wp(G j(n, r, t)) holds for allp with |p−1/2|< ε iff 1≤ t ≤ j(2r −2r +1)+ r−3.

Throughout this paper, letαr,p ∈ (p,1) be the root of the equationX = p+ qXr . We
write αr omitting p for the casep= 1/2. For later use, we record the numerical data:α3 =
(
√

5−1)/2≈ 0.618, α4 ≈ 0.543689, α5 ≈ 0.51879, α6 ≈ 0.50866, α7 ≈ 0.504138. We
list inequalities aboutw(n, p, r, t) below, which will be used to prove Theorem 4. Lemma 6
follows from Lemma 4 and Lemma 5.

Lemma 4 ([33]). Let p, r, t0,c be fixed constants. Suppose thatw(n, p, r, t0) = c holds for
all n≥ t0. Then we havew(n, p, r, t)≤ cα t−t0

r,p for all t ≥ t0 andn≥ t.

Lemma 5 ([12, 29, 32]). Let r = 3 and1≤ t ≤ 2, or r = 4 and1≤ t ≤ 7, or r = 5 and
1≤ t ≤ 18. Then there existsε > 0 such thatw(n, p, r, t) = pt holds for alln≥ t and p
with |p− 1

2|< ε.

Lemma 6. Let s≥ 2 andt ≥ 7. Then there existsε > 0 such that

w(n, p,3,s)≤ p2αs−2
3,p and w(n, p,4, t)≤ p7α t−7

4,p

hold for alln≥ s (resp.n≥ t) andp with |p− 1
2|< ε.

We will use Lemma 8 in our main reduction step to prove Theorem 4, see Claim 9.
To prove Lemma 8 we need the following lemma, which is essentially proved in [11], cf.
Proposition 2.8 and 7.7 of [11].

Lemma 7. We have (i)(2αr)2r+1
< 8 for r ≥ 8, and (ii)1/(2αr) < 1− (1/2)r .

Proof. Recall thatαr is the unique root off (x) = 0 in (1/2,1), where f (x) = xr −2x+1.
We note thatf (1/2) > 0 and f (1) = 0.

(i) is equivalent to2αr < 8b, whereb= 1/2r+1. It is sufficient to showf (8b/2) < 0. We
usebr = r/2r+1 ≤ 8/29 = 1/64, 2×81/64 < 2.07< log8, and8b = eblog8 > 1+ blog8.
Then we have(8b/2)r = 8br/2r ≤ 81/64/2r < (log8)/2r+1 = blog8< 8b−1, as desired.

(ii) is equivalent toαr > β := 2r−1/(2r −1). It is sufficient to showf (β ) > 0, and this
follows from β r =

(1
2

( 2r

2r−1

))r = 1
2r

( 2r

2r−1

)r
> 1

2r

( 2r

2r−1

)
= 1

2r−1 = 2β −1. ¤
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Lemma 8. Let r ≥ 9, tr = 2r+1−3r−1 andp = 1/2. Then we have

wp(G1(n, r−1, tr−1))α
(t+3)−tr−1
r−1 < wp(G1(n, r, t)) (4)

for tr−1≤ t ≤ tr , wherewp(G1(n,a,b)) = (a+b+1)pa+b.

Proof. Setα = αr−1, t = tr− i and we prove (4) by induction oni, 0≤ i≤ tr−tr−1 = 2r−3.
First we show the casei = 0, i.e.,t = tr . In this case (4) is

(2r −2r +2)p2r−2r+1α2r
< (2r+1−2r)p2r+1−2r−1,

or equivalently,

α2r
<

2r+1−2r
2r −2r +2

p2r−2.

The RHS is more than2p2r−2 = 8p2r
, and so it is sufficient to showα2r

< 8p2r
, i.e.,

(2αr−1)2r
< 8, which is true forr ≥ 9 by Lemma 7 (i).

To show the induction step, we assume that (4) is true fori, that is,

R(2α)2r−i < 2r+1−2r− i,

whereR= (2r −2r +2)/4. Then, for the casei +1, we have

R(2α)2r−(i+1) = R(2α)2r−i/(2α) < (2r+1−2r− i)/(2α).

We have to show that the RHS is less than2r+1−2r− (i +1), that is,

1
2α

< 1− 1
2r+1−2r− i

.

By Lemma 7 (ii) andi ≤ 2r −3 we have

1
2αr−1

< 1− 1
2r−1 < 1− 1

2r+1−2r− (2r −3)
≤ 1− 1

2r+1−2r− i

as desired. ¤
We use Lemmas 9 and 10 to prove Theorems 4 and 7 respectively.

Lemma 9. w∗(n, p, r, t)≤ w∗(n, p, r−1, t +1).

Proof. If G ∈X0(n, r, t) thenG ∈X0(n, r−1, t +1). In fact, ifG is not(r−1)-wise(t +1)-
intersecting, then we can findG1, . . . ,Gr−1 ∈ G such that|G1∩ ·· · ∩Gr−1| = t. But G is
r-wiset-intersecting and so everyG∈ G must containG1∩ ·· ·∩Gr−1, which contradicts
the fact thatG is non-trivial. ¤

Lemma 10. w∗(n+1, p, r, t)≥ w∗(n, p, r, t).

Proof. ChooseG ∈ X0(n, r, t) with wp(G ) = w∗(n, p, r, t). Then we haveG ′ := G ∪{G∪
{n+1} : G∈ G } ∈X0(n+1, r, t) andwp(G ′ : [n+1]) = wp(G : [n])(q+ p) = w∗(n, p, r, t),
which meansw∗(n+1, p, r, t)≥ w∗(n, p, r, t). ¤
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2.2. Shifting and shadow. For integers1≤ i < j ≤ n and a familyG ⊂ 2[n], we define
the(i, j)-shift σi j as follows:

σi j (G ) = {σi j (G) : G∈ G },
where

σi j (G) =
{

(G−{ j})∪{i} if i 6∈G, j ∈G, (G−{ j})∪{i} 6∈ G ,
G otherwise.

A family G ⊂ 2[n] is calledshifted if σi j (G ) = G for all 1≤ i < j ≤ n, andG is called
tameif it is shifted and

⋂
G = /0. If G is r-wiset-intersecting, then so isσi j (G ). Note also

thatwp(G ) = wp(σi j (G )), namely, shifting operations keep thep-weight.

Lemma 11. Let G ⊂ 2[n] be a non-trivialr-wise t-intersecting family with maximalp-
weight. Then we can find a tamer-wise t-intersecting familyG ′ ⊂ 2[n] with wp(G ′) =
wp(G ).

Proof. If G ∈ X0(n, r, t) thenG ∈ X0(n, r−1, t +1) (see Lemma 9). We apply all possible
shifting operations toG to get a shifted familyG ′ ∈ X0(n, r −1, t + 1) with the samep-
weight.

We have to show that
⋂

G ′ = /0. Otherwise we may assume that1 ∈ ⋂
G ′ andH =

[2,n] 6∈ G ′. SinceG ′ is p-weight maximal we can findG1, . . . ,Gr−1 ∈ G ′ such that|G1∩
·· ·∩Gr−1∩H|< t. Then we have|G1∩·· ·∩Gr−1|< t +1, which is a contradiction. ¤

To prove Theorems 2, 3 and 6, we will use some basic facts about shadow. For a family
G ⊂ 2[n] and a positive integer̀< n, let us define thè-th lower shadow ofG , denoted by
∆`(G ), as follows:

∆`(G ) = {F ∈ ([n]
`

)
: F ⊂ ∃G∈ G }.

Similarly, the`-th upper shadow ofG is defined by∇`(G ) = {H ∈ ([n]
`

)
: H ⊃ ∃G∈ G }.

We define the complement family ofG ⊂ 2[n] by G c := {[n]−G : G∈ G }. We note that
∇`(G ) = (∆n−`(G c))c and so|∇`(G )|= |∆n−`(G c)|.
Lemma 12. Let 0 < a < b and /0 6= Ga⊂

([n]
a

)
. Then we have

|∇b(Ga)|
|Ga| ≥

(n
b

)
(n

a

) .

Moreover ifa+b < n then we have|∇b(Ga)|> |Ga|.
Proof. Choose a realx≤ n so that|Ga|=

( x
n−a

)
. By the Kruskal–Katona Theorem[24, 23],

we have|∇b(Ga)| = |∆n−b(G c
a )| ≥ ( x

n−b

)
, and |∇b(Ga)|/|Ga| ≥

( x
n−b

)
/
( x

n−a

) ≥ (n
b

)
/
(n

a

)
,

where we usedx≤ n in the last inequality. Ifa+ b < n then
(n

b

)
/
(n

a

)
> 1 and the result

follows. ¤
Lemma 13. Let A ,B ⊂ 2[n] be Sperner families, and letc > 1 be a real. Suppose that

A ∩∆(B) = /0, (5)
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where∆(B) = {C : C⊂ ∃B∈B}. Then we have

c|A |+ |B| ≤ c
( n
dn/2e

)
+

( n
dn/2e−1

)
,

with equality holding iffA =
( [n]
dn/2e

)
andB =

( [n]
dn/2e−1

)
.

Proof. First suppose thatn is odd and letn = 2m+1. Then by the Sperner theorem[28],
A andB have size at most

( n
m+1

)
=

(n
m

)
, which gives the desired upper bound. Possible

optimal configurations forA ,B are
( [n]

m+1

)
and

([n]
m

)
. Only the caseA =

( [n]
m+1

)
andB =([n]

m

)
satisfies (5).

Next suppose thatn is even and letn = 2m. Setai = |A ∩ ([n]
i

)|, bi = |B ∩ ([n]
i

)| and
xi = cai +bi . Using the Yamamoto[35] (or LYM) inequality, we have

∑
i

xi(n
i

) = c∑
i

ai(n
i

) +∑
i

bi(n
i

) ≤ c+1,

and

∑
i 6=m

xi(n
i

) ≤ c+1− xm(n
m

) . (6)

By (5) we haveam+bm≤
(n

m

)
, and

xm = cam+bm≤ c(am+bm)≤ c
(n

m

)
. (7)

Consequently we have

∑
i

xi = xm+ ∑
i 6=m

xi ≤ xm+
(

n
m−1

)
∑
i 6=m

xi(n
i

)

≤ xm+
(

n
m−1

)(
c+1− xm(n

m

))
= (c+1)

(
n

m−1

)
+

xm

m+1

≤ (c+1)
(

n
m−1

)
+

c
m+1

(
n
m

)
= c

(
n
m

)
+

(
n

m−1

)
,

which is the desired inequality. For the equality, we needcam+bm = c(am+bm) = c
(n

m

)
in

(7), which impliesbm = 0 andam =
(n

m

)
. Since∑i ai/

(n
i

)≤ 1, we haveai = 0 if i 6= m, i.e.,

A =
([n]

m

)
. By (5) we havebi = 0 if i > m, andc|A |+ |B|= c

(n
m

)
+

( n
m−1

)
implies|B|=

∑i<mbi =
( n

m−1

)
. We also need equality in (6), which gives∑i<mbi/

(n
i

)
= 1. Consequently

we have
( n

m−1

)
= ∑i<mbi ≤

( n
m−1

)
∑i<mbi/

(n
i

)
=

( n
m−1

)
, and sobm−1 =

( n
m−1

)
, namely

B =
( [n]

m−1

)
. ¤

3. PROOF OFTHEOREM 4

First we show (i). Let(r, t) ∈ A and letG ⊂ 2[n] be a non-trivialr-wise t-intersecting
family with maximalp-weight. By Lemma 11 we may assume thatG is tame, namely, it
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is shifted and
⋂

G = /0. If G ∈ G1(n, r, t) then there is nothing to prove. Thus we assume
thatG ∈ X1(n, r, t) and we will show that there existγ ,ε > 0 such that

wp(G ) < (1− γ)wp(G1(n, r, t)) (8)

holds for alln≥ r + t andp with |p−1/2|< ε. If G ∈ X1−X4 = G2∪G3∪G4 then (8)
follows from Lemmas 2 and 3. Thus we may assume thatG ∈ X4(n, r, t). Let w̃∗(n, p, r, t)
be the maximalp-weight of tame families inX4(n, r, t). Then it suffices to show

wp(G ) = w̃∗(n, p, r, t) < (1− γ)wp(G1(n, r, t)). (9)

Recall thatwp(G1(n, r, t)) = (t + r)pt+r−1q+ pt+r and letω := w1/2(G1(n, r, t)) = (t +
r +1)(1/2)t+r . The following simple observation is useful.

Claim 1. Suppose thatwp(G )≤ f (p) holds for some continuous functionf (p), and sup-
pose thatf (1/2) < ω. Then there existγ,ε > 0 such thatwp(G ) < (1− γ)wp(G1(n, r, t))
for all |p−1/2|< ε.

Let t(i) = max{ j : G is i-wise j-intersecting}, and lets= t(r−1). SinceG is p-weight
maximal we havet(r) = t. Due toG ∈ X0(n, r, t) we havet < s and

wp(G )≤ w∗(n, p, r−1,s)≤ w(n, p, r−1,s). (10)

After [11] let h := min{i : |G∩ [t + i]| ≥ t for all G ∈ G }. This is the maximum size of
“holes” in [t +h].

Claim 2. 1≤ h≤ s− t.

Proof. SinceG is non-trivial, we haveh≥ 1. By the definition ofs and the shiftedness of
G , we haveG1, . . . ,Gr−1 ∈ G such thatG1∩·· ·∩Gr−1 = [s]. Then it follows fromt(r) = t
that|[s]∩G| ≥ t for all G∈ G , namely,t +h≤ s. ¤

Let b = t +h−1 and letTi = [b+1− i,b] be the right-mosti-set in[b]. ForA⊂ [b] let

G (A) = {G∩ [b+1,n] : G∈ G , [b]\G = A}.
SinceG is shifted, we haveG (A)⊂ G (Ti) for all A∈ ([b]

i

)
, and thus we have

wp(G )≤
h

∑
i=0

(b
i

)
pb−iqi wp(G (Ti) : [b+1,n]). (11)

Claim 3. For0≤ i < h and2≤ j < r, G (Ti) is j-wise(i j +(r−1− j)h+1)-intersecting.

Proof. Suppose thatG (Ti) is not j-wise v-intersecting, wherev = i j + (r − 1− j)h+ 1.
Then we can findG1, . . . ,G j ∈ G (Ti) such that|G1∩ ·· ·∩G j |< v. SinceG is shifted, we
may assume thatG1∩·· ·∩G j ⊂ [b+1,b+v−1]. By shifting(G`∪ [b])−Ti ∈ G , we get
G′` := (G`∪ [b])− [b+1+(`−1)i,b+ `i] ∈ G for 1≤ `≤ j.

By the definition ofh we have someH ∈ G such that|H ∩ [b]| < t and due to the
shiftedness ofG we may assume thatH = [n]− [t,b]. By shifting H, we getG′` := [n]−
[b+ i j + 1+(`−1− j)h,b+ i j +(`− j)h] ∈ G for j < ` < r. Then we haveG′1∩ ·· · ∩
G′r−1∩H = [t−1], which contradicts ther-wiset-intersecting property ofG . ¤



MULTIPLY-INTERSECTING FAMILIES REVISITED 11

Claim 4. G (Th) is r-wise((r−1)h+1)-intersecting, and ifG 6⊂ Gh(n, r, t) thenG (Th) is
(r−1)-wise((r−1)h+2)-intersecting.

Proof. First suppose thatG (Th) is notr-wisev-intersecting, wherev = (r−1)h+1. Then
we can findG1, . . . ,Gr ∈ G (Th) such thatG1∩ ·· · ∩Gr ⊂ [b+ 1,b+ v−1]. By shifting
(G`∪ [b])−Th ∈ G we getG′` := (G`∪ [b])− [t +(`−1)h, t + `h−1] ∈ G for 1≤ ` ≤ r.
Then we have|G′1∩·· ·∩G′r |< t, a contradiction.

Next suppose thatG (Th) is not (r − 1)-wise w-intersecting, wherew = (r − 1)h+ 2.
Then we can findG1, . . . ,Gr−1 ∈ G (Th) such thatG1∩·· ·∩Gr−1⊂ [b+1,b+w−1]. By
shifting (G` ∪ [b])−Th ∈ G we getG′` := (G` ∪ [b])− [t + (`− 1)h, t + `h− 1] ∈ G for
1≤ ` < r. SinceG 6⊂ Gh(n, r, t) we haveG′r := [n]− [t +(r −1)h, t + rh] ∈ G . Then we
have|G′1∩·· ·∩G′r |< t. ¤

Now we explain the outline of our proof for (9) (cf. Claims 5–9). Ifs is large then
(9) follows from (10). Thus we may assumes is small, actually we will find that we
may assumes≤ t + 4. Then we have1≤ h≤ 4 by Claim 2 and we can apply Claim 4
sinceG ∈ X4(n, r, t). Using Claims 3 and 4 we define an upper bound functiong(i)(p) for
wp(G (Ti) : [b+1,n]) by

g(i)(p) =
{

min{w(n′, p, r−1, t ′),w(n′, p, r−2, t ′′)} if 0≤ i < h
min{w(n′, p, r,(r−1)h+1),w(n′, p, r−1,(r−1)h+2)} if i = h,

wheren′ = n−b, t ′ = (r−1)i +1 andt ′′ = (r−2)i +h+1. We will find continuous func-
tions f (i) such thatg(i)(p)≤ f (i)(p) and∑h

i=0

(b
i

)
pb−iqi f (i)(1/2) < ω. Then this together

with (11) and Claim 1 will give (9). We will apply Claim 1 several times with different
f (i), and ourε > 0 will be chosen sufficiently small to get through all the cases.

Let tr := 2r+1−3r−1.

Claim 5. Let r = 5 and5≤ t ≤ t5 = 48. Then we have (9).

Proof. We show that (9) holds ifs≥ t +5, and then we proceed the casewise analysis for
the casess≤ t +4, i.e.,1≤ h≤ 4.

First suppose thats = t(4) ≤ 7. Sinces > t we havet ≤ 6. By (10) and Lemma 5 it
follows wp(G )≤w(n, p,4,s) = ps. To apply Claim 1 asf (p) = ps, we note that(1/2)s <

ω holds iff 2t−s+5 < t +6. This is true ift ≤ 6 ands≥ t +3, and we are done in this case.
Thus for the caset ≤ 6 we may assume thats≤ t +2, i.e.,1≤ h≤ 2 by Claim 2.

Next suppose thats≥ 8. By (10) and Lemma 6 we havewp(G )≤w(n, p,4,s)≤ p7αs−7
4,p .

If s≥ t +5 then the RHS is less thanω at p = 1/2 for 1≤ t ≤ 50. Thus we may assume
thats≤ t +4 and so1≤ h≤ 4 by Claim 2.

Case 5-1.h = 1. We find thatG (T0) is (r − 2)-wise 2-intersecting by Claim 3, and
G (T1) is (r −1)-wise (r + 1)-intersecting by Claim 4. Thenwp(G (T0) : [b+ 1,n]) ≤ p2

andwp(G (T1) : [b+1,n])≤ pr+1 follow from Lemma 5. Thus using (11) we have

wp(G )≤ pt · p2 + t pt−1q· pr+1, (12)

and the RHS is less thanω at p = 1/2 for t > 2r−1−2r−2. Then Claim 1 gives (9).



12 NORIHIDE TOKUSHIGE

Case 5-2.h = 2. SinceG (T0) is 3-wise 3-intersecting,G (T1) is 4-wise 5-intersecting,
andG (T2) is 4-wise 10-intersecting, we have

wp(G )≤ pt+1 · p2α3,p +(t +1)ptq· p5 +
(t+1

2

)
pt−1q2 · p7α3

4,p,

and the RHS is less thanω at p = 1/2 for 1≤ t ≤ 54.
Case 5-3.h = 3. SinceG (T0) is 3-wise 4-intersecting,G (T1) is 3-wise 7-intersecting,

G (T2) is 4-wise 9-intersecting, andG (T3) is 5-wise 13-intersecting, we have

wp(G )≤ pt+2 · p2α2
3,p +(t +2)pt+1q· p2α5

3,p +
(t+2

2

)
ptq2 · p7α2

4,p +
(t+2

3

)
pt−1q3 · p13,

and the RHS is less thanω at p = 1/2 for 1≤ t ≤ 49.
Case 5-4.h = 4. SinceG (T0) is 3-wise 5-intersecting,G (T1) is 3-wise 8-intersecting,

G (T2) is 4-wise 9-intersecting,G (T3) is 4-wise 13-intersecting, andG (T4) is 5-wise 17-
intersecting, we have

wp(G ) ≤ pt+3 · p2α3
3,p +(t +3)pt+2q· p2α6

3,p +
(t+3

2

)
pt+1q2 · p7α2

4,p

+
(t+3

3

)
ptq3 · p7α6

4,p +
(t+3

4

)
pt−1q4 · p17,

and the RHS is less thanω at p = 1/2 for 1≤ t ≤ 57. ¤
We note that similarly to Lemma 9 we have

w̃∗(n, p, r, t)≤ w̃∗(n, p, r−1, t +1). (13)

Claim 6. Let r = 6 and4≤ t ≤ t6 = 109. Then we have (9).

Proof. If 5≤ t +1≤ t5 = 48 then using (13) with Claim 5 we have

w̃∗(n, p,6, t)≤ w̃∗(n, p,5, t +1) < (1− γ)wp(G1(n,5, t +1)) = (1− γ)wp(G1(n,6, t)).

Thus we may assume thats≥ t +1≥ 49. By (10) and Lemma 4 with Claim 5 we have

wp(G )≤ w(n, p,5,s)≤ wp(G1(n,5,48))αs−48
5,p .

If s≥ t +4 then the RHS is less thanω at p = 1/2 for t ≤ 124. Thus we may assume that
s≤ t +3 and1≤ h≤ 3.

Case 6-1.h = 1. Same as Case 5-1. (We need (12) fort ≥ t5. This is true in general for
r ≥ 6. In fact we have (12) fort > 2r−1−2r−2 andtr−1 > 2r−1−2r−2.)

Case 6-2. h = 2. SinceG (T0) is (r − 2)-wise 3-intersecting,G (T1) is (r − 2)-wise
(r +1)-intersecting, andG (T2) is (r−1)-wise(2r)-intersecting, we have

wp(G )≤ pt+1 · p3 +(t +1)ptq· pr+1 +
(t+1

2

)
pt−1q2 · p2r , (14)

and the RHS is less thanω at p = 1/2 for tr−1≤ t ≤ 2r+1.
Case 6-3. h = 3. SinceG (T0) is (r − 2)-wise 4-intersecting,G (T1) is (r − 2)-wise

(r + 2)-intersecting,G (T2) is (r − 2)-wise (2r)-intersecting, andG (T3) is (r − 1)-wise
(3r−1)-intersecting, we have

wp(G )≤ pt+2 · p4 +(t +2)pt+1q· p7α4,p +
(t+2

2

)
ptq2 · p7α5

4,p +
(t+2

3

)
pt−1q3 · p17, (15)

and the RHS is less thanω at p = 1/2 for tr−1≤ t ≤ 2r+1. ¤
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Claim 7. Let r = 7 and2≤ t ≤ t7 = 234. Then we have (9).

Proof. The caset = 2 was proved in [33]. Using (13) with Claim 6 we have (9) for
4≤ t +1≤ 109. Thus we may assume thats≥ t +1≥ 110, and we have

wp(G )≤ w(n, p,6,s)≤ wp(G1(n,6,109))αs−109
6,p .

If s≥ t +4 then the RHS is less thanω at p = 1/2 for t ≤ 278. Thus we may assume that
s≤ t +3 and1≤ h≤ 3. Then we repeat the casewise check as in Claim 6. In this case we
can replace (15) with the following:

wp(G )≤ pt+2 · p4 +(t +2)pt+1q· pr+2 +
(t+2

2

)
ptq2 · p2r +

(t+2
3

)
pt−1q3 · p3r−1.

¤
Similarly we can prove the following.

Claim 8. Let r = 8 and1≤ t ≤ t8 = 487. Then we have (9).

Finally we are ready to prove the general caser ≥ 9.

Claim 9. Let r ≥ 9 and1≤ t ≤ tr . Then we have (9).

Proof. We prove the result by induction onr. We have (9) for1≤ t +1≤ tr−1 using (13)
with our induction hypothesis forr −1. Thus we may assume thats≥ t + 1 > tr−1, and
we have

wp(G )≤ w(n, p, r−1,s)≤ wp(G1(n, r−1, tr−1))α
s−tr−1
r−1,p .

If s≥ t +3 then the RHS is less thanω at p = 1/2 for tr−1≤ t ≤ tr by Lemma 8. Thus we
may assume thats≤ t +2 and1≤ h≤ 2.

Case 9-1.h = 1. Same as Case 5-1.
Case 9-2.h = 2. We use the same estimation as in Case 6-2. Then the RHS of (14) is

less thanω at p = 1/2 iff

(a−b)/2≤ t ≤ (a+b)/2, (16)

wherea= 3·2r−1, b=
√

1+22r+3 +(8r +3)2r+1. Sincetr−1≤ t ≤ tr , we have (16). ¤
This completes the proof of (i) of the theorem. Moreover we have proved the inequality

(8) if G is tame andG ∈ X1(n, r, t).
Next we show (ii). We include the proof of this part from [33] for self-completeness. Set

G1 = G1(n, r, t). LetG ⊂ 2[n] be a (not necessarily shifted) non-trivialr-wiset-intersecting
family, and suppose thatG ∈ X1(n, r, t). By Lemma 11 we can find a tamer-wise t-
intersecting familyG ∗ with wp(G ∗) = wp(G ). If G ∗ 6⊂ G1 then we have already shown
thatwp(G ∗) < (1− γ)wp(G1). Thus we may assume thatG ∗ ⊂ G1, and in particular (by
renaming the starting family if necessary) we may assume thatG ∗ = σxy(G )⊂ G1, where
x= t +r, y= x+1. We note that|[x]∩G| ≥ x−2 for all G∈G . Moreover if|[x]∩G|= x−2
thenG∩{x,y}= {y} and(G−{y})∪{x} 6∈ G .

For i ∈ [x] setG (i) = {G ∈ G : [y] \G = {i}}, and for j ∈ [x− 1] and z∈ {x,y} let
Gz( j) = {G∈ G : [y]\G = { j,z}}. Sinceσxy(G )⊂ G1 we haveGx( j)∩Gy( j) = /0 and so
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wp(Gx( j))+wp(Gy( j))≤ px−1q2. SetG ( /0) = {G∈ G : [x]⊂G}, Gxy = {G∈ G : G∩ [y] =
[x−1]} and lete= mini∈[x] wp(G (i)). Then we have

wp(G ) = ∑
i∈[x]

wp(G (i))+ ∑
j∈[x−1]

(
wp(Gx( j))+wp(Gy( j))

)
+wp(G ( /0))+wp(Gxy) (17)

≤ e+(x−1)pxq+(x−1)px−1q2 + px + px−1q2 = e+(η−1)pxq, (18)

whereη = x
p + 1

q. Note thate≤ pxq, and (18) coincideswp(G1) = η pxq iff e = pxq.
If there is somej ∈ [x− 1] such thatGx( j)∪Gy( j) = /0, then by (17) we getwp(G ) ≤
wp(G1)− px−1q2 =

(
1−q/(η p)

)
wp(G1), and we are done. Thus we may assume that

Gx( j)∪Gy( j) 6= /0 for all j ∈ [x−1]. (19)

To provewp(G ) < (1− γ)wp(G1) by contradiction, let us assume that for anyγ > 0 and
anyn0 there is somen > n0 such that

wp(G ) > (1− γ)wp(G1) = (1− γ)η pxq. (20)

By (18) and (20) we havee> (1−γη)pxq. This means, lettingH (i) = {G\ [y] : G∈G (i)}
andY = [y+1,n],

wp(H (i) : Y) only misses at mostγη p-weight for all i ∈ [x]. (21)

SinceG ∈ X1(n, r, t) both
⋃

j∈[x−1] Gx( j) and
⋃

j∈[x−1] Gy( j) are non-empty. Using this
with (19), we can chooseG∈ Gx( j) andG′ ∈ Gy( j ′) with j 6= j ′, say, j = x−1, j ′ = x−2.
Let L = [r−2] andH ∗ =

⋂
`∈L H (`). Then by (21) we have

wp(H ∗ : Y) > 1− (r−2)γη . (22)

If H ∗ ⊂ 2Y is not(r−2)-wise1-intersecting, then we can findH` ∈H ∗ for ` ∈ L so that
H1∩·· ·∩Hr−2 = /0. SettingG` := ([y]−{`})∪H` ∈G we have|G1∩·· ·∩Gr−2∩G∩G′|=
t−1, which contradicts ther-wiset-intersecting property ofG . ThusH ∗ is (r−2)-wise
1-intersecting andwp(H ∗ :Y)≤ p by (2). But this contradicts (22) because we can choose
γ so small thatp¿ 1− (r−2)γη . ¤

4. APPLICATION

4.1. Proof of Theorem 2. We deduce (ii) from Theorem 4, then (i) follows from (ii). We
include the proof of this part from [33] for self-completeness. Assuming the negation of
Theorem 2 for some fixed(r, t)∈A, we will construct a counterexample to Theorem 4 (ii).

For reals0 < b < a we writea±b to mean the open interval(a−b,a+b) andn(a±b)
means((a−b)n,(a+b)n)∩N. Fix γ0 := γThm4 andε0 := εThm4 from Theorem 4. For fixed
r andt we note thatf (p) := w∗(n, p, r, t) = (t + r)pt+r−1q+ pt+r is a uniformly continuous
function of p on 1

2± ε0. Let γ = γ0
4 , ε = ε0

2 , andI = 1
2± ε.

Chooseε1¿ ε so that

(1−3γ) f (p) > (1−4γ) f (p+δ ) (23)
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holds for allp∈ I and all0 < δ ≤ ε1. Choosen1 so that

∑
i∈J

(n
i

)
pi

0(1− p0)n−i > (1−3γ)/(1−2γ) (24)

holds for alln > n1 and allp0 ∈ I0 := 1
2± 3ε

2 , whereJ = n(p0± ε1). Choosen2 so that

(1− γ)|F1(n,k, r, t)|> (1−2γ) f (k/n)
(n

k

)
(25)

holds for alln > n2 andk with k/n∈ I . Finally setn0 = max{n1,n2}.
Suppose that Theorem 2 fails. Then for our choice ofγ,ε andn0, we can find some

n,k andF ∈ Y1(n,k, r, t) with |F | ≥ (1− γ)|F1(n,k, r, t)|, wheren > n0 and k
n ∈ I . We

fix n,k andF , and letp = k
n. By (25) we have|F | > c

(n
k

)
, wherec = (1− 2γ) f (p).

Let G =
⋃

k≤i≤n(∇i(F )) be the collection of all upper shadows ofF , which belongs to
X1(n, r, t). Let p0 = p+ ε1 ∈ I0.

Claim 10. |∇i(F )| ≥ c
(n

i

)
for i ∈ J.

Proof. Choose a realx≤ n so thatc
(n

k

)
=

( x
n−k

)
. Since|F | > c

(n
k

)
=

( x
n−k

)
the Kruskal–

Katona Theorem implies that|∇i(F )| ≥ ( x
n−i

)
. Thus it suffices to show that

( x
n−i

)≥ c
(n

i

)
,

or equivalently, ( x
n−i

)
( x

n−k

) ≥ c
(n

i

)

c
(n

k

) . (26)

Since i ∈ J we havei > n(p0− ε1) = np = k, and (26) is equivalent toi · · ·(k+ 1) ≥
(x−n+ i) · · ·(x−n+k+1), which follows fromx≤ n. ¤

By the claim we have

wp0(G )≥∑
i∈J
|∇i(F )| pi

0(1− p0)n−i ≥ c∑
i∈J

(n
i

)
pi

0(1− p0)n−i . (27)

Using (24) and (23), the RHS of (27) is more than

c(1−3γ)/(1−2γ) = (1−3γ) f (p) > (1−4γ) f (p+ ε1) = (1− γ0) f (p0).

This meanswp0(G ) > (1− γ0)w∗(n, p0, r, t), which contradicts Theorem 4 (ii) because
p0 ∈ I0 = 1

2± 3ε
2 = 1

2± 3ε0
4 ⊂ 1

2± ε0. ¤
4.2. Proof of Theorem 3. For the casest = 1,2, it follows from [18, 12] thats(n, r, t) ≤
s(n,4, t)≤ |F0(n,k0, r, t)| with the only optimal familyF0(n,k0, r, t). So we may assume
thatt ≥ 3, though our proof will be valid for all(r, t) ∈ A. We are going to prove

s(n, r, t) = max{|F0(n,k0, r, t)|, |F1(n,k1, r, t)|}.
LetG ⊂ 2[n] be anr-wiset-intersecting Sperner family with maximal size. If|⋂G | ≥ t, say
[t]⊂⋂

G , thenG ′ = {G− [t] : [t]⊂G∈G } is Sperner, and by the Sperner theorem we have
|G |= |G ′| ≤ ( n−t

d(n−t)/2e
)
= |F0|with equality holding iffG ′∼=

( [t+1,n]
d(n−t)/2e

)
or

( [t+1,n]
b(n−t)/2c

)
, that

is, G ∼= F0(n,k0, r, t).
So we assume that|⋂G |< t. Let

u(G ) = max{i : |G∩ [i +1]| ≥ i for all G∈ G }.
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For a permutationτ on [n] let τ(G ) = {τ(G) : G∈ G }, and definẽu(G ) = maxτ u(τ(G )),
where the max is taken over all possible vertex permutations. We further assume that this
max is attained whenτ is the identity, that is,̃u(G ) = u(G ). Setx = t + r.

First suppose that̃u(G ) ≥ x− 1, i.e., |G∩ [x]| ≥ x− 1 for all G ∈ G . For i ∈ [x] let
G (i) = {G∩ [x+1,n] : i 6∈G∈ G }, and letG ( /0) = {G∩ [x+1,n] : [x]⊂G∈ G }. Choose
i0 such that|G (i0)|= maxi |G (i)|. Then we have|G | ≤ x|G (i0)|+ |G ( /0)|. SetA = G (i0),
B = G ( /0), where bothA andB are Sperner in2[x+1,n]. Moreover we haveA ∩∆(B) = /0.
Thus by Lemma 13 we have

|G | ≤ x|A |+ |B| ≤ x

(
n−x
dn−x

2 e
)

+
(

n−x
dn−x

2 e−1

)
= |F1(n,k1, r, t)|,

with equality holding iffG ∼= F1(n,k1, r, t). This completes the proof for the caseũ(G )≥
x−1.

From now on we assume thatũ(G ) < x−1. We will show that

|G |< (1− ξ
2)max{|F0|, |F1|}

for someξ > 0. Let G` = G ∩ ([n]
`

)
andL = {` : G` 6= /0}.

Claim 11. L⊂ [bn
2c,n].

Proof. Let a andb be the least and second least element ofL respectively, and letH =
(G −Ga)∪∇b(Ga). ThenH is r-wise t-intersecting Sperner. Ifa+ b < n then we have
|∇b(Ga)| > |Ga| by Lemma 12, which means|H | > |G |. Thus we may assume|L∩
[0,bn

2c−1]| ≤ 1. If this number is one, then we repeat the same exchange operation for
a= minL andb= bn

2c. ConsequentlyL⊂ [b n
2c,n] follows from the maximality ofG . ¤

Chooseε > 0 from Theorem 2 and seta= min
(
L∩ [bn

2c,(1
2 +ε)n)

)
. We choose a vertex

permutationρ so thatũ(Ga) = u(ρ(Ga)). Sinceũ(G ) < x−1we still haveu(ρ(G )) < x−1.
We rearrange the vertex set so thatρ is the identity. For a realp∈ (0,1), let f1(p) = pt ,
f2(p) = xpx−1(1− p)+ px and f (p) = max{ f1(p), f2(p)}. We note that

max{|F0(n,k0, r, t)|, |F1(n,k1, r, t)|}= ( f (1
2)+o(1))

( n
bn/2c

)
. (28)

Claim 12. There existsξ > 0 such that|Ga|< (1−2ξ ) f (a
n)

(n
a

)
.

Proof. First suppose thatGa is trivial and [t] ⊂ G for all G ∈ Ga. SinceG is non-trivial
we can findH ∈ G such that|[t]∩H| < t. ThusG ′

a := {G− [t] : G∈ Ga} is (r −1)-wise
1-intersecting and

|Ga| = |G ′
a| ≤m(n− t,a− t, r−1,1) =

(n−t−1
a−t−1

)

= ((a/n)t+1 +o(1))
(n

a

)
< (1− γ1) f1(a/n)

(n
a

)
.

Next suppose thatGa is non-trivial, i.e., |⋂Ga| < t. If ũ(Ga) < x− 1, namely, if
Ga ∈ Y1(n,a, r, t), then|Ga|< (1− γ2) f2(a/n)

(n
a

)
follows from Theorem 2. Thus we may

assume that̃u(Ga) = u(Ga)≥ x−1.
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Let Ga(i) = {G∩ [x+ 1,n] : i 6∈ G ∈ Ga} andGa( /0) = {G− [x] : [x] ⊂ G ∈ Ga}. Set
e= mini∈[x] |Ga(i)|. Since|Ga|= ∑x

i=1 |Ga(i)|+ |Ga( /0)| we have

|Ga| ≤ e+(x−1)
( n−x

a−x+1

)
+

(n−x
a−x

)
. (29)

Suppose that|Ga|> (1− γ3) f2(a/n)
(n

a

)
= (1− γ3)(1+o(1))(x

( n−x
a−x+1

)
+

(n−x
a−x

)
) holds for

any γ3 > 0. Then by (29) we havee > (1− γ3(x+ 2))
( n−x

a−x+1

)
. This meansGa(i) only

misses at mostγ3(x+2) portion of
([x+1,n]

a−x+1

)
for all i ∈ [x]. Sinceu(G ) < x−1 we can find

someG∈ G −Ga such that|G∩ [x]| ≤ x−2, say,G 63 x−1,x. Let G ∗
a =

⋂r−1
i=1 Ga(i). Then

we have
|G ∗

a |>
(
1− (r−1)γ3(x+2)

)( n−x
a−x+1

)
. (30)

If G ∗
a ⊂

([x+1,n]
a−x+1

)
is not(r−1)-wise1-intersecting, then we can findG∗i ∈ G ∗

a for i ∈ [r−1]
so thatG∗1∩·· ·∩G∗r−1 = /0. SettingGi := ([x]−{i})∪G∗i ∈ G we have|G1∩·· ·∩Gr−1∩
G|= t−1, which contradicts ther-wiset-intersecting property ofG . ThusG ∗

a is (r−1)-
wise 1-intersecting and|G ∗

a | ≤
(n−x−1

a−x

)
, which contradicts (30) because we can choose

γ3 > 0arbitrarily small. Therefore there is someγ3 > 0such that|Ga|< (1−γ3) f2(a/n)
(n

a

)
.

Finally we get the claim by settingξ = (1/2)max{γ1,γ2,γ3}. ¤
Since f is continuous, we can chose a constantµ , 0 < µ ¿ ε, so that

(1−2ξ ) f (1
2 + µ) < (1−ξ ) f (1

2).

SetM = M(G ) = {k∈ [bn
2c,(1

2 + µ)n) : Gk 6= /0}.
Claim 13. ∑k∈M |Gk|/

(n
k

)
< (1−ξ ) f (1

2).

Proof. It will be shown by induction onm = |M|. The caseM = {k} follows from
Claim 12; in fact noting thatf is increasing on[1

2, 1
2 + µ ] we have

|Gk|/
(n

k

)
< (1−2ξ ) f ( k

n) < (1−2ξ ) f (1
2 + µ) < (1−ξ ) f (1

2).

Next we assume that our claim holds form− 1. Let a and b be the least and second
least element ofM, and letH = (G −Ga)∪∇b(Ga). ThenH is r-wise t-intersecting
Sperner andM(H ) = M(G )−{a}. By Lemma 12, we have|Ga|/

(n
a

) ≤ |∇b(Ga)|/
(n

b

)
,

which means

∑
k∈M(G )

|Gk|(n
k

) ≤ ∑
k∈M(H )

|Hk|(n
k

) ,

and the RHS is less than(1−ξ ) f (1
2) by the induction hypothesis. ¤

By Claim 13 we have

(1−ξ ) f (1
2) > ∑

k∈M

|Gk|(n
k

) ≥ 1( n
bn/2c

) ∑
k∈M

|Gk|.

On the other hand, by the Yamamoto inequality, we have

1≥ ∑
k∈L−M

|Gk|(n
k

) ≥ 1( n
( 1

2+µ)n

) ∑
k∈L−M

|Gk|,
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where we usedL−M ⊂ [(1
2 + µ)n,n] by Claim 11. Consequently we have

|G |= ∑k∈L |Gk|< (1−ξ ) f (1
2)

( n
bn/2c

)
+

( n
( 1

2+µ)n

)
< (1− ξ

2) f (1
2)

( n
bn/2c

)
,

and the RHS is less thanmax{|F0|, |F1|} by (28). ¤

4.3. Proof of Theorem 6. Let r and t be fixed. Assuming the negation of Theorem 6,
we will construct a counterexample to (i) of Theorem 4. Fixε := εThm4 from Theorem 4
and let p0 = 1

2 − ε
2. Since p0 < 1

2 and t ≤ 2r − r − 1 we havewp0(G0(n, r, t)) = pt
0 >

wp0(G1(n, r, t)) by Lemma 1. Thus we can chooseγ > 0 so that

(1−2γ)pt
0 > wp0(G1(n, r, t)). (31)

Then choosen0 so that

∑
i∈J

(n−t
i−t

)
pi

0(1− p0)n−i > pt
0(1−2γ)/(1− γ) (32)

holds for alln > n0, whereJ = ((p0− ε
2)n,(p0 + ε

2)n)∩N.
Suppose that Theorem 6 fails. Then for our choice ofε,γ andn0, we can find some

n,k andF ∈ Y0(n,k, r, t) with |F | ≥ (1− γ)
(n−t

k−t

)
, wheren > n0 and k

n < 1
2− ε = p0− ε

2.
We fix n,k andF . Let G =

⋃
k≤i≤n(∇i(F )) be the collection of all upper shadows ofF ,

which is non-trivialr-wiset-intersecting, i.e.,G ∈ X0(n, r, t).

Claim 14. |∇i(F )| ≥ (1− γ)
(n−t

i−t

)
for i ∈ J.

Proof. Choose a realx ≤ n− t so that(1− γ)
(n−t

k−t

)
=

( x
n−k

)
. Since |F | ≥ ( x

n−k

)
the

Kruskal–Katona Theorem implies that|∇i(F )| ≥ ( x
n−i

)
. Thus it suffices to show that( x

n−i

)≥ (1− γ)
(n−t

i−t

)
, or equivalently,

( x
n−i

)
( x

n−k

) ≥ (1− γ)
(n−t

i−t

)

(1− γ)
(n−t

k−t

) . (33)

Sincei ∈ J we havei > (p0− ε
2)n > k, and (33) is equivalent to(i− t) · · ·(k− t + 1) ≥

(x−n+ i) · · ·(x−n+k+1), which follows fromx≤ n− t. ¤
By the claim we have

wp0(G )≥∑
i∈J
|∇i(F )| pi

0(1− p0)n−i ≥ (1− γ)∑
i∈J

(n−t
i−t

)
pi

0(1− p0)n−i . (34)

By (32) and (31), the RHS of (34) is more than(1−γ) · pt
0(1−2γ)/(1−γ) = pt

0(1−2γ) >
wp0(G1(n, r, t)), which contradicts Theorem 4 (i). ¤

4.4. Proof of Theorem 7. Let ε > 0 and p < 1
2 − ε be given. By Theorem 6 we can

find 0 < γ ¿ 1/4 andn0 so thatm∗(n,k, r, t) < (1− 2γ)
(n−t

k−t

)
for all n > n0 andk with

k
n < 1

2− ε
2. Choose0 < δ ¿ ε so that(p−δ , p+δ )⊂ (0, 1

2−δ ). Choosen1 so that

(1−2γ) ∑
k∈J

(n−t
k−t

)
pkqn−k + ∑

k6∈J

(n
k

)
pkqn−k < (1− γ)pt (35)
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holds for alln > n1, whereJ = ((p−δ )n,(p+δ )n)∩N. Let n > max{n0,n1} and choose
G ∈ X0(n, r, t) with wp(G ) = w∗(n, p, r, t). Let Gk = G ∩ ([n]

k

)
for k∈ J.

If Gk ∈ Y0(n,k, r, t) then by Theorem 6 we have|Gk| < (1− 2γ)
(n−t

k−t

)
. If Gk fixes t

vertices, say[t], thenG ′
k := {G− [t] : G∈ G } is (r−1)-wise1-intersecting. (OtherwiseG

fixes[t].) Thus we have|Gk|= |G ′
k| ≤

(n−t−1
k−t−1

)
. Consequently, in both cases, we have

|Gk|< (1−2γ)
(n−t

k−t

)
. (36)

Using (36) and (35), we have

wp(G )≤ ∑
k∈J

|Gk|pkqn−k + ∑
k6∈J

(n
k

)
pkqn−k < (1− γ)pt ,

and this is true for alln≥ t by Lemma 10. ¤
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