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Abstract. We study the maximum possible size of a subset in a vector space over a finite field
which contains no solution of a given linear equation (or a system of linear equations). This is
a finite field version of Ruzsa’s work [7].

1. Introduction

Ruzsa studied the maximum possible size of a subset of [n] := {1, 2, . . . , n} which contain
no (non-trivial) solution to a given linear equation in [7]. In this paper the same problems are
addressed in a vector space over a finite field instead of a set of integers. Let us introduce some
basic definitions from [7].

Let p be a prime, and let Fp denote the p-element field. For a given equation we consider a
solution in Fn

p , the n-dimensional vector space over Fp. More precisely, we deal with an equation

a1x1 + a2x2 + · · ·+ akxk = 0,

where a1, . . . , ak ∈ Fp, x1, . . . , xk ∈ Fn
p , and we always assume that the equation is balanced,

that is, the coefficients satisfy

a1 + a2 + · · ·+ ak = 0.

The assumption makes sense because if
∑

ai ̸= 0 then it is easy to construct a large subset of
Fn
p which contains no solution to the equation, e.g., the set of vectors (1, ∗, . . . , ∗) ∈ Fn

p .
A solution (x1, x2, . . . , xk) yields a partition of [k] := {1, 2, . . . , k} into disjoint non-empty

subsets

[k] = T1 ⊔ T2 ⊔ · · · ⊔ Tl

such that xi = xj if and only if i, j ∈ Tν for some ν ∈ [l]. We say that the solution is trivial if∑
i∈Tν

ai = 0 for all ν ∈ [l].(1)

Note that we always have a trivial solution (x, x, . . . , x) with the partition [k] itself. Also note
that a solution with k distinct elements is necessarily a non-trivial solution. We define the genus
of an equation by the largest l such that there is a partition of [k] into l parts coming from a
trivial solution, that is,

genus = max{l : [k] = T1 ⊔ · · · ⊔ Tl with (1)}

For example, consider the equation x1 + x2 − x3 − x4 = 0 in Fn
5 . In this case a1 = a2 = 1,

a3 = a4 = −1, and a solution (1, 2, 1, 2), which defines a partition [4] = {1, 3} ⊔ {2, 4}, is trivial.
On the other hand, a solution (1, 3, 2, 2) is non-trivial, because the corresponding partition is
[4] = {1} ⊔ {2} ⊔ {3, 4} but, say, a3 + a4 ̸= 0. Indeed this equation is of genus 2.
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For a fixed equation (or a system of equations) in k variables we are interested in a subset
A ⊂ Fn

p which contains no non-trivial solution. We define

rp(n) := max{|A| : A contains no non-trivial solution},
Rp(n) := max{|A| : A contains no solution with k distinct elements}.

By definition rp(n) ≤ Rp(n). We further define

γp := lim
n→∞

log rp(n)

log pn

if this limit exists. In other words rp(n) is roughly pγpn if n is sufficiently large. By translating
Ruzsa’s problem posed in [7] into the Fn

p setting we can ask whether

(2) γp =
1

genus

for every balanced equation. It is not difficult to show that γp ≤ 1/genus, see Theorem 6. For the
genus two equation x1+x2−x3−x4 = 0 it is known that γp = 1/2 and we will discuss this topic
(Sidon set) in detail in the next section. For comparison we briefly explain the original concept
introduced by Ruzsa. He defines γRuzsa(N) := limn→∞ log r(N)/ logN , where r(N) denotes the
maximum possible size of A ⊂ [N ] which contains no non-trivial solution of the given equation.
Then all known results suggest the possibility that the identity γRuzsa = 1/genus holds, where
the genus in this case is defined in the same way as ours by replacing Fn

p with [N ].
A non-trivial solution to the equation x1−2x2+x3 = 0 is an arithmetic progression of length

three with a non-zero difference. Thus we have rp(n) = Rp(n) for this equation, and Ellenberg
and Gijswijt gave a good upper bound for rp(n) as follows.

Theorem 1 (Ellenberg-Gijswijt[2]). Let p be a prime. For the equation x1− 2x2+x3 = 0 there
exists λ < p such that

rp(n) ≤ λn,

where λ is defined by

λ := min
0<t<1

t−
p−1
3 (1 + t+ · · ·+ tp−1).

In this case by writing λ = pc with c < 1 we get γp ≤ log(pc)n/ log pn = c while the equation
x1 − 2x2 + x3 = 0 is of genus 1. Thus γp < 1/genus in this case. Indeed we prove in [6] that
for any balanced equation with at least three variables it follows Rp(n) ≤ µn for some constant
µ < p depending only on p and the equation, see also [9] for a much more general result. This
means that γp < 1/genus for any balanced equation of genus one, and so (2) fails in our finite
field setting. On the other hand for the equations of genus more than one, the authors were
unable to find any counterexample to (2).

In the next section we explore Ruzsa’s method in the finite field model. In many cases we get
the corresponding results in a similar way. Subsection 2.1 deals with symmetric equations, and
it follows from Theorem 2 and 4 that rp(n)/Rp(n) → 0 as n → ∞ for some symmetric equations
provided p sufficiently large. Subsection 2.2 deals with non-symmetric equations and Subsection
2.3 deals with Sidon sets. As for a Sidon set we get rp(2n) ≥ pn and Rp(n) ≤ p

n
2 + 3

2 +O(p−
n
2 )

for the equation x1 − x2 + x3 − x4 = 0 (Theorem 9 and 10). In Subsection 2.4 we show that

rp(n) = (Ω(p))
n
2 for various balanced equation with four variables (Theorem 11).

In the last section we deal with a system of linear equations. Here we are interested in finding
a large subset of Fn

p without some prescribed geometric shapes such as stars, W -shapes, double-
parallelograms, and parallelepipeds. We will give some upper bounds for the maximum size of
such a subset, that is, a subset containing no solutions to the corresponding system of equations
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with distinct variables. For example, the double-parallelograms is defined by a solution to the
system of equations {

x1 − x2 + x3 − x4 = 0,

x3 − x4 + x5 − x6 = 0

with six distinct elements. Then we show that Rp(n) < 2p
n
2 + 1

2 (Theorem 14). This bound is

almost tight up to constant factor if n is even, because Rp(n) ≥ p
n
2 follows from Theorem 9. For

the proofs in the last section we use combinatorial counting and probabilistic sampling argument.
The latter approach goes back to Székely’s proof [10] of the Szémeredi–Trotter theorem, and we
refer to a paper [3] by Fox and Sauermann.

2. One equation

2.1. Symmetric equations. We say that an equation with even number of variables is sym-
metric if it is written in the following form:

a1x1 + a2x2 + · · ·+ alxl = a1xl+1 + a2xl+2 + · · ·+ alx2l.

The following result corresponds to Theorem 3.2 in [7].

Theorem 2. Let a1, . . . , al be positive integers, and let p be a prime with p ≫ max{a1, . . . , al, l}.
For the equation

a1x1 + · · ·+ alxl = a1xl+1 + · · ·+ alx2l

with variables x1, . . . , x2l ∈ Fn
p we have

Rp(n) ≤
√(

2l
2

)
p

n
2 ,

rp(n) ≤ O(p
n
l ).

The proof of the above result is quite similar to the proof in [7]. For convenience we include
the proof for an easier case with a slightly stronger bound as follows.

Theorem 3. Let p be a prime, and let a, b ∈ Z with a > b > 0, p > 2(a+ b). For the equation
ax+ by = au+ bv with variables x, y, u, v ∈ Fn

p we have

Rp(n) <
√
5 p

n
2 ,(3)

rp(n) ≤ p
n
2 .(4)

Proof. Let A ⊂ Fn
p attain Rp(n), that is, A contains no solution with four distinct elements. Let

M := |A| = Rp(n). For z ∈ Fn
p let

t(z) := #{(x, y) ∈ A2 : ax+ by = z}.
Then we have ∑

z∈Fn
p

t(z) = M2.

Let N := pn. Then, using the power mean inequality1, we have

M4 =
(∑

t(z)
)2

≤ N
∑

t(z)2,(5)

where the sum is taken over z ∈ Fn
p .

1( 1
n

∑
tr)

1
r ≤ ( 1

n

∑
ts)

1
s for r < s.
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On the other hand, we have

t(z)2 = #{(x, y) ∈ A2 : ax+ by = z} ×#{(u, v) ∈ A2 : au+ bv = z},
which gives us that ∑

t(z)2 = #{(x, y, u, v) ∈ A4 : ax+ by = au+ bv}.

The RHS counts the number of solutions where at least two variables have the same value
because A contains no solution with four distinct elements. Let us bound this number from
above. For trivial solutions, that is, x = u and y = v, the number is at most M2. For non-trivial
solutions they should be one of the following four cases: x = y, x = v, y = u, or u = v. For
the case x = y we have M choices for x and y, and M − 1 choices for u (then v is uniquely
determined). Thus the number of non-trivial solutions with x = y is at most M(M − 1), and
the other three cases have the same estimation. Thus, in total, we have∑

t(z)2 ≤ M2 + 4M(M − 1) < 5M2.(6)

Consequently, by (5) and (6), we have (3).
The proof for (4) is similar and easier. Let A ⊂ Fn

p attain rp(n). In this case we have that

M4 ≤ N
∑

t(z)2 = NM2,

which implies M ≤
√
N , as needed. □

In Theorem 2 we have a main term p
n
2 in the upper bound for Rp(n). The next result, which

corresponds to Theorem 3.3 in [7], shows that the exponent n
2 cannot be improved in general.

Theorem 4. Let ϵ > 0 be a fixed real number. If a prime p is sufficiently large, then there is a
symmetric equation with six variables such that

Rp(n) > p(
1
2
−ϵ)n.

Proof. By choosing p sufficiently large we may assume that pϵ > 2 and

2d2 < p ≤ 4d2

for some integer d ≥ 2. We consider the following symmetric equation

x+ d(y + z) = u+ d(v + w)

in variables x, y, z, u, v, w ∈ Fn
p . Let

A := {(x1, . . . , xn) ∈ Fn
p : 0 ≤ xi ≤ d− 1 for all i ∈ [n]}.

Then |A| = dn ≥ (
√
p/2)n > p(

1
2
−ϵ)n. So it suffices to show that A contains no solution to

the equation with 6 distinct elements. Suppose that (x, y, z, u, v, w) ∈ A6 is a solution. Since
xi, yi, zi ≤ d− 1 we have

xi + d(yi + zi) ≤ (d− 1) + d(2d− 2) < 2d2 < p.

Thus, for each i, we have
xi + d(yi + zi) = ui + d(vi + wi)

not only in Fp but also in Z. By reading the equation in modulo d we have

xi ≡ ui (mod d).

Since xi, ui ∈ {0, 1, . . . , d− 1} we can conclude xi = ui for each i, that is, x = u. □
Similarly we can also prove the following.
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Theorem 5. Let a and b be mutually prime integers with 1 ≤ a < b and b ≥ 2. Then for every
prime p with 2b2 < p ≤ 4b2 and the equation ax+ by = au+ bv, we have

rp(n) ≥ (
√
p/2)n .

Proof. Let A := {(x1, . . . , xn) ∈ Fn
p : 0 ≤ xi ≤ b − 1 for all i ∈ [n]}. Then |A| = bn ≥ (

√
p/2)n.

So it suffices to show that A contains no non-trivial solution. Suppose that (x, y, u, v) ∈ A4 is a
solution. Since xi, yi ≤ b− 1 we have

axi + byi ≤ (b− 1)b+ b2 < 2b2 < p.

Thus, for each i, we have
axi + byi = aui + bvi

not only in Fp but also in Z. By reading the equation in modulo b we have

axi ≡ aui (mod b).

Since a and b are mutually prime and xi, ui ∈ {0, 1, . . . , b− 1}, we can conclude xi = ui for each
i, that is, x = u. Then we also have y = v, and (x, y, u, v) is a trivial solution. □

2.2. Non-symmetric equations. The following result follows from Theorem 2. The proof is
identical to Theorem 3.6 in [7].

Theorem 6. For any equation in Fn
p of genus m we have rp(n) = O(p

n
m ).

The following result corresponds to Theorem 7.5 in [7].

Theorem 7. Let q ≥ 5 be a prime, and let d = 3q and n ≫ q. Let k be a non-negative integer,
and let p be a prime with

1
3d

k+1 < p < 2
3d

k+1.

Then for the equation

(d+ 1)x+ y = (d− 1)u+ 3v(7)

in variables x, y, u, v ∈ Fn
p we have

rp(n) >
(
ck p

k
k+1

)n
,

where ck > 0 is a constant depending only on k.

Proof. We identify Fq with Q := {0, 1, . . . , q − 1} ⊂ Z. Choose B ⊂ Qn so that the equation
x + y + z = 3w has no non-trivial solution in B. We may assume that |B| > (q/3)n for n ≫ q
by Theorem 5.4 in [5]. Let us define a set of vectors of non-negative integers:

A = {a ∈ Zn : a =

k−1∑
i=0

dib(i), b(i) ∈ B}.

Note that if a = (a1, . . . , an) ∈ A then each aj is expanded in base d with coefficients in Q, and

|A| = |B|k.

Claim 1. The equation (7) contains no non-trivial solution in A ⊂ Zn.

Proof. Suppose, to the contrary, that (x, y, u, v) ∈ A4 is a non-trivial solution to (7). Expand

them as x =
∑

dix(i), x(i) ∈ B etc. Let j be the minimum i for which x(i), y(i), u(i), v(i) are not
all equal. Then we have

x(0) = y(0) = u(0) = v(0), · · · , x(j−1) = y(j−1) = u(j−1) = v(j−1).
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Since (x, y, u, v) is a solution we have

(d+ 1)djx(j) + djy(j) ≡ (d− 1)dju(j) + 3jv(j) (mod dj+1),

and so

x(j) + y(j) + u(j) ≡ 3v(j) (mod d).(8)

But all these vectors are in B and each entry is ≤ q− 1 < d/3, so no carry over happens in both
sides of (8). Thus we actually have that

x(j) + y(j) + u(j) = 3v(j).

Since B contains no non-trivial solution to x+y+z = 3v we must have x(j) = y(j) = u(j) = v(j),
which is a contradiction. □

We note that

max
a∈A

max
j

aj ≤
k−1∑
i=0

di(maxQ) <
dk − 1

d− 1

(
d

3
− 1

)
<

dk

3
<

p

d
,

and A ⊂ {0, 1, . . . , ⌊p/d⌋}n ⊂ {0, 1, . . . , p− 1}n. Note also that

max
x,y∈A

max
j

{(d+ 1)xj + yj} ≤ (d+ 2)
dk − 1

d− 1

(
d

3
− 1

)
<

dk+1

3
< p,

and similarly maxu,v∈Amaxj{(d − 1)uj + 3vj} < p. Now we view A as a subset of Fn
p . Even

in this case the equation (7) has no non-trivial solution in A ⊂ Fn
p . Using |B| > (q/3)n and

p < 2
3d

k+1 we have

|A| = |B|k > (q/3)kn = (d/9)kn >

(
1
9k

(
3
2p
) k

k+1

)n

,

as needed. □

2.3. Sidon sets. We say that a subset A ⊂ Fn
p is a Sidon set if the equation x+ y = u+ v has

no non-trivial solution in A, and A is a weak Sidon set if the equation has no solution with four
distinct elements in A. For A ⊂ Fn

p and g ∈ Fn
p let

δA(g) := {(x, y) ∈ A2 : g = x− y}.

We list some properties of a Sidon set, which can be easily verified.

Claim 2. Let A ⊂ Fn
p . Then the following three conditions are equivalent.

• A is a Sidon set.
• If x, y, u, v ∈ A satisfy x+ y = u+ v then {x, y} = {u, v}.
• If g ∈ Fn

p and g ̸= 0 then δA(g) ≤ 1.

Theorem 8. If A ⊂ Fn
p is a Sidon set, then |A| < p

n
2 + 1

2 , that is,

rp(n) < p
n
2 + 1

2

for the equation x+ y = u+ v.

Proof. We count
∑

δA(g) in two ways. On one way we have∑
g∈Fn

p

δA(g) = |A|2.
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On the other way we have∑
g∈Fn

p

δA(g) = δA(0) +
∑
g ̸=0

δA(g) ≤ |A|+ (|Fn
p | − 1).

By solving |A|2 ≤ |A|+ pn − 1 we get

|A| ≤ 1
2

√
4pn − 3 < p

n
2 + 1

2 .

□

The above upper bound is well-known, in fact, if A is a Sidon set in a commutative group G
then |A| <

√
|G|+ 1

2 .
Huang, Tait, and Won studied a Sidon set in Fn

3 in [4], and they proved that r3(2n) = 3n,

3n + 1 ≤ r3(2n+ 1) ≤ ⌈3n+
1
2 ⌉, r3(3) = 5, r3(5) = 13.

Claim 3 ([1]). Let A = {(a, a2) : a ∈ Fp} ⊂ F2
p. Then A is a Sidon set.

Proof. Let g, h ∈ Fp with (g, h) ̸= (0, 0) be given. We show that δA((g, h)) ≤ 1, that is, the
number of pairs ((a, a2), (b, b2)) ∈ A2 satisfying (a, a2)− (b, b2) = (g, h) is at most one.

If g = 0 then a− b = g = 0, that is, a = b, and 0 = a2 − b2 = h, a contradiction. So we may
assume that g ̸= 0. Substituting a = b+ g into h = a2− b2 we have h = (b+ g)2− b2 = 2bg+ g2,
and 2bg = h− g2. Thus b = (2g)−1(h− g2) is uniquely determined, and so is a = b+ g. □

The following result is shown in [4] for the case p = 3, and the same proof works for the
general p.

Theorem 9. For the equation x+ y = u+ v we have

rp(2n) ≥ pn.

Proof. Let A = {(a, a2) : a ∈ Fpn} ⊂ F2
pn . Then, by Claim 3, A is a Sidon set with |A| = pn.

Since F2
pn and F2n

p are isomorphic as vector spaces over Fp we can view A ⊂ F2n
p . □

For subsets A,B ⊂ Fn
p let A + B denote the sumset {a + b : a ∈ A, b ∈ B}. The following

claim is corresponding to Theorem 4.7 in [7]. Ruzsa’s counting argument works for Fn
p as well

provided p ≥ 5, and we omit the proof.

Claim 4 ([7]). Let p ≥ 5, and let A,B ⊂ Fn
p with |A| = m, |B| = N . If A is a weak Sidon set

then

|A+B| ≥ m2N

3m+N − 1
.

Theorem 10. Let p ≥ 5, and let A ⊂ Fn
p be a weak Sidon set. Then

|A| ≤ 1
2(
√

4pn + 5 + 3) = p
n
2 + 3

2 +O(p−
n
2 ).

In other words for the equation x+ y = u+ v it follows

Rp(n) ≤ p
n
2 + 3

2 +O(p−
n
2 ).

Proof. Let B = Fn
p . We estimate |A+B| in two ways. For a lower bound we apply Claim 4 with

N = pn. For a trivial upper bound we use N ≥ |A + B|. Then the result follows from solving

N ≥ m2N
3m+N−1 . □
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2.4. An equation with four variables. Let a, b, c, d be positive integers with a + b = c + d.
In this subsection we consider the equation

(9) aX + bY = cU + dV,

where X,Y, U, V run over Fn
p . Without loss of generality we may assume that a ≤ b and d ≤ c.

Moreover, by symmetry, we may assume that d ≤ a ≤ b ≤ c. We have dealt with the symmetric
case (a, b) = (d, c) in Theorem 5, so here we focus on the case

(10) d < a ≤ b < c.

Theorem 11. Let a, b, c, d satisfy (10). Then there exist positive constants γ, p0 and n0 such
that if p is a prime with p ≥ p0 and n ≥ n0 then for the equation (9) it follows

rp(n) ≥ (γ
√
p)n.

This result corresponds to Theorem 7.3 in [7]. We closely follow Ruzsa’s proof. For the case
when abcd is not a square, he uses a version of Behrend’s construction, while we use the following
result due to Salem and Spencer [8].

Claim 5. Let a, b, c, b′, c′,m be positive integers with a = b + c = b′ + c′ and a < m. Then for
all n > n0(a,m) there exists A ⊂ Zn

m satisfying the following conditions.

• |A| ≥ (αm)n for some constant α independent of m and n.
• If x, y, z ∈ A satisfy one of axi = byi+ czi and axi = b′yi+ c′zi for every 1 ≤ i ≤ n (here
we write x = (x1, . . . , xn) etc.), then x = y = z.

Proof. Let d := ⌊ma ⌋. For simplicity we assume that (d+1)|n and let k = n
d+1 . Let A be the set

of vectors having exactly k entries of value j for each j = 0, 1, . . . , d, that is,

A = {(x1, . . . , xn) : #{i : xi = j} = k for all 0 ≤ j ≤ d}.
Then |A| is given by the multinomial coefficient (with k repeated d+ 1 times), and

|A| =
(

n

k, k, . . . , k

)
>

(d+ 1)n

n
d+1
2

>
(m
2a

)n
if n ≫ d. This verifies the first item of the conditions.

To verify the second item assume that x, y, z ∈ A satisfies one of the two equations for each
j. Let I = {i : xi = d}. Then by the equations we have yi = zi = d for all i ∈ I. In other words
we have x = y = z on I. Next let I ′ = {i : xi = d − 1}. Then the same reasoning yields that
x = y = z on I ′. Continuing this we eventually get x = y = z. □

Proof of Theorem 11. First we consider the case n = 1. Let S := a+b, and let q > S be a prime
with √

p/2S2 < q <
√
p/S2.(11)

Define

B := {1 + x+ Sqx′ : 0 ≤ x, x′ < q, x′ ≡ x2 (mod q)}.
We focus on a solution of (9) in B, that is, a solution (X,Y, U, V ) ∈ B4, where

(12) X = 1 + x+ Sqx′, Y = 1 + y + Sqy′, U = 1 + u+ Squ′, V = 1 + v + Sqv′.

Then aX + bY = cU + dV < p follows from p > S2q2. It is shown in [7] that if B contains a
non-trivial solution to (9) then abcd is a quadratic residue modulo q.

If abcd is not a square, then we can choose q with (11) so that abcd is a quadratic nonresidue
modulo q (see [7] for details, note also that his N and p correspond to our p and q, respectively).
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In this case B contains no non-trivial solution to (9), and |B| = q ≥
√
p/2S2 by (11). Thus we

have rp(1) ≥
√
p/2S2, and for the general n case we get rp(n) ≥ (rp(1))

n ≥ (γ
√
p)n.

If abcd = t2 for some positive integer t, then let

ϵ :=
1

2S2 + 2t

and define B′ ⊂ B by

B′ := {1 + x+ Sqx′ : 0 ≤ x < ϵq, 0 ≤ x′ < q, x′ ≡ x2 (mod q)}.

Then in the same way as in [7] we see that any non-trivial (resp. trivial) solution to (9) in B′

gives rise to a non-trivial (resp. trivial) solution to the following system of balanced equations
with variables x, y, u, v:

cSu = (ac+ t)x+ (bc− t)y, dSv = (ad− t)x+ (bd+ t)y,

or

cSu = (ac− t)x+ (bc+ t)y, dSv = (ad+ t)x+ (bd− t)y.

Now to consider the general n case let

B′(n) = {(x1, . . . , xn) ∈ Zn : xi ∈ B′ for 1 ≤ i ≤ n}.

Then |B′(n)| = (⌊ϵq⌋+ 1)n ≥ (ϵq)n. If x, y, u, v ∈ B′(n) satisfy (9) then

cSui = (ac+ t)xi + (bc− t)yi, dSvi = (ad− t)xi + (bd+ t)yi,(13)

or

cSui = (ac− t)xi + (bc+ t)yi, dSvi = (ad+ t)xi + (bd− t)yi(14)

holds for each 1 ≤ i ≤ n, where write x = (x1, . . . , xn), . . . , v = (v1, . . . , vn).
By (10) we have ac > bd, and so ac > t > bd because abcd = t2. Again by (10) we have

bc ≥ ac > t. Thus, in the first equations in (13) and (14), no coefficient vanishes. Therefore by

Claim 5 we can find C(n) ⊂ ([0, ϵq] ∩ Z)n such that

(C1) |C(n)| ≥ (αϵq)n for some constant α independent of ϵq and m, and

(C2) if x, y, u ∈ C(n) satisfy one of

cSui = (ac+ t)xi + (bc− t)yi and cSui = (ac− t)xi + (bc+ t)yi

for every 1 ≤ i ≤ n, then x = y = u.

For x = (x1, . . . , xn) ∈ C(n) let x′ = (x′1, . . . , x
′
n) be such that x′i ≡ x2i (mod q) with 0 ≤ x′i < q

for 1 ≤ i ≤ n, and define

D(n) := {1 + x+ Sqx′ : x ∈ C(n)} ⊂ B′(n).

Then it follows from (C1) and (11) that |D(n)| = |C(n)| ≥ (αϵq)n >
(
αϵ
√

p
2S2

)n
. We claim that

D(n) contains no non-trivial solution to (9). Let (X,Y, U, V ) be a solution to (9) in D(n). This
defines (x, y, u, v) from (12). Then, for each 1 ≤ i ≤ n, (xi, yi, ui, vi) satisfies one of (13) and
(14). Thus by (C2) we have x = y = u, and by (13) or (14) we have x = y = u = v. This, in
turn, implies that X = Y = U = V , that is, (X,Y, U, V ) is a trivial solution. □
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3. System of equations

For a given system of linear equations (S) in k variables, we call a solution (S)-shape if it
consists of k distinct elements. Then let Rp(n) denote the largest size of A ⊂ Fn

p which contains
no (S)-shape. By k-AP we mean an arithmetic progression of length k with non-zero difference,
that is, a sequence of the form x, x+ d, x+ 2d, . . . , x+ (k − 1)d with d ̸= 0.

The proofs in this section use probabilistic sampling argument (cf. [3, 10]), and combinatorial
counting similar to the one used in the proof for Theorem 3. The first two proofs (for k-star
and W ) are suggested by Sauermann, and the last two proofs (for 2P and Q) were rewritten
according to the referees’ suggestion which improves the exponent of the upper bounds.

3.1. k-star. We consider the following system of equations with 2k + 1 variables:

(k-star)


x1 + x2 − 2z = 0,

x3 + x4 − 2z = 0,

· · ·
x2k−1 + x2k − 2z = 0.

We call a solution (x1, x2, . . . , x2k, z) to the above equations a (k-star)-shape, or simply k-star,
if x1, . . . , x2k, z are all distinct. This configuration consists of k 3-APs gluing at the middle term
z. Recall the definition of λ from Theorem 1. Since λ depends on p we also write λ = λp.

Theorem 12. For the system of equations (k-star) we have

Rp(n) < c
√
k λn

p ,

where c = 3
2

√
3 < 2.6.

Proof. Suppose that A ⊂ Fn
p contains no k-star. Then each element of A can be a middle term

of at most k − 1 3-APs. Thus the number of 3-APs in A is at most (k − 1)|A|.
Let B ⊂ A be a random subset obtained by choosing each element in A with probability

q = 1/
√
3k uniformly at random. Let X = |B|, and let Y be the number of 3-APs in B. Then

we have E[X] = q|A| and E[Y ] ≤ q3(k − 1)|A| = q|A|k−1
3k < 1

3q|A|. Thus E[X − Y ] > 2
3q|A|.

This means that there exists some actual subset B′ ⊂ A which can be made 3-AP-free by
deleting one element from each 3-AP in B′, and the resulting subset B′′ ⊂ B after deletion still
has size more than 2

3q|A|. On the other hand since B′′ contains no 3-AP we have |B′′| ≤ λn by

Theorem 1. Thus we have 2
3q|A| < λn and |A| < 3

2qλ
n = c

√
k λn. □

3.2. W . We consider the following system of equations:

(W )

{
x1 − x2 − x3 + x4 = 0,

x2 − x3 − x4 + x5 = 0.

Recall that we call a solution (x1, x2, . . . , x5) to (W ) a W-shape if x1, x2, . . . , x5 are all distinct.

Theorem 13. For the system of equations (W ) we have

Rp(n) < 2(λ
2
3
p p

1
3 )n.

Proof. Suppose, to the contrary, that A ⊂ Fn
p contains no W -shape but |A| ≥ 2(λ

2
3 p

1
3 )n.

A 5-AP is a W -shape, so there is no 5-AP in A.
Suppose that (x, y, z) and (x′, y′, z′) are disjoint two 3-APs with the same difference. Then

(x, x′, y, y′, z) is a W -shape. Thus A contains at most two 3-APs with the same difference, and
if there are two of them, then they consist of a 4-AP.



SOLVING LINEAR EQUATIONS IN A VECTOR SPACE I 11

If (x, y, z) is a 3-AP with difference d, then (z, y, x) is a 3-AP with difference −d, and these two
3-APs determine the same 3-element set. Thus the number of non-zero differences for feasible
3-APs in Fn

p is at most pn−1
2 < 1

2p
n. Consequently,

#(3-APs in A) < 1
2p

n · 2 = pn.

Now we choose each element in A with probability q := (λp )
n
3 uniformly at random. This

yields a random subset B ⊂ A. Let X = |B|. Then we have

E[X] = q|A| ≥
(
λ
p

)n
3 · 2(λ

2
3 p

1
3 )n = 2λn.

Let Y = #(3-APs in B). Then we have

E[Y ] < pn · q3 = λn.

Thus E[X − Y ] > λn, which means that A contains a 3-AP-free subset of size larger than λn.
This contradicts Theorem 1. □

3.3. 2P . We consider the following system of equations:

(2P )

{
x1 − x2 + x3 − x4 = 0,

x3 − x4 + x5 − x6 = 0.

We call a solution (x1, x2, . . . , x6) to (2P ) a 2P -shape (double-parallelograms) if x1, x2, . . . , x6
are all distinct.

Theorem 14. Let p > 5. For the system of equations (2P ) we have

Rp(n) < 2 p
n
2 + 1

2 .

Proof. Let t(z) := #{(x, y) ∈ A2 : x− y = z}. On one hand we have∑
z∈Fn

p\{0}

t(z) = #{(x, y) ∈ A2 : x− y ̸= 0} = |A|(|A| − 1).

On the other hand we have t(z) ≤ 4 for z ̸= 0. Indeed if t(z) ≥ 5 then we can find 6 distinct
elements x1, . . . , x6 ∈ A such that z = x1−x2 = x4−x3 = x5−x4, that is, A contains 2P -shape.
Thus we have ∑

z∈Fn
p\{0}

t(z) ≤ 4(pn − 1).

By solving |A|(|A| − 1) ≤ 4(pn − 1) we get |A| ≤ 1
2

(√
16pn − 15 + 1

)
< 2p

n
2 + 1

2 . □

3.4. Q. We consider the following system of equations:

(Q)


x1 + x3 = x2 + x4,

y1 + y3 = y2 + y4,

x1 + y2 = x2 + y1,

x1 + y4 = x4 + y1.

We call a solution (x1, . . . , x4, y1, . . . , y4) to (Q) a Q-shape (cube or parallelepiped) if the 8
elements are all distinct. We also call a solution (x1, . . . , x4) to the first equality of (Q) a P -
shape if the four elements are all distinct. For a P -shape (x1, x2, x3, x4) we define its type by
{x2 − x1, x4 − x1} ∈ (Fn

p \ {0})2. Four P -shapes of types {±s,±t} are congruent to each other,
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and let [s, t] denote the corresponding equivalence class. The number of equivalence classes of
types in Fn

p is

(15)
( pn−1

2
2

)
< 1

8 p
2n.

Theorem 15. Let p > 3. For the system of equations (Q) we have

Rp(n) <
3
2 p

3
4
n.

Proof. Let A ⊂ Fn
p with |A| ≥ 3

2 p
3
4
n. We need to show that A contains a Q-shape. To this end

we will show that the number of P -shapes in A is at least p2n. Suppose that this is true, and
recall from (15) that the number of types of P -shapes is < 1

8 p
2n. Then at least 8 of the p2n

different P -shapes in A must have the same type. Thus we can find two disjoint P -shapes which
produce a Q-shape. (Indeed one can find a Q-shape in any 5 different P -shapes.)

Now we estimate the number of P -shapes in A. We have∑
z∈Fn

p

t(z) = |A|2 ≥ (32)
2p

3
2
n,

where t(z) := #{(x, y) ∈ A2 : x− y = z}. Then, using the power mean inequality,

#{(x1, x2, x3, x4) ∈ A4 : x1 − x2 = x4 − x3} =
∑
z∈Fn

p

t(z)2 ≥ 1

pn

(∑
z

t(z)

)2

≥ (32)
4p2n.

In the above we count not only the number of P -shapes but also the number of (x1, x2, x3, x4)
satisfying x1 − x2 = x4 − x3 and #{x1, x2, x3, x4} < 4. The latter is at most 4p2n because
it counts the number of the following (not exclusive) four cases (i) x1 = x2 and x3 = x4, (ii)
x1 = x4 and x2 = x3, (iii) x1 = x3 and 2x1 = x2+x4, and (iv) x2 = x4 and 2x2 = x1+x3. Thus
the number of P -shapes in A is at least ((3/2)4 − 4)p2n > p2n, as needed. □
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[10] L. A. Székely. Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput.
6 (1997), 353–358.

Masato Mimura, Mathematical Institute, Tohoku University, Japan
Email address : m.masato.mimura.m@tohoku.ac.jp

Norihide Tokushige, College of Education, University of the Ryukyus, Japan
Email address : hide@u-ryukyu.ac.jp


	1. Introduction
	2. One equation
	2.1. Symmetric equations
	2.2. Non-symmetric equations
	2.3. Sidon sets
	2.4. An equation with four variables

	3. System of equations
	3.1. k-star
	3.2. W
	3.3. 2P
	3.4. Q

	Acknowledgments
	References

